Skip to main content
Log in

Integrated multi-mode waveguide devices for quantum communication

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Quantum information processing, or more specifically, quantum communication, is the future of information technology. However, this mode of communication faces several challenges for its practical implementation, such as compatibility with the current integrated optics technology. This paper conceptually implements quantum communication at the device level using integrated optics. We implement the quantum communication in a waveguide-based circuit using an indigenously developed high-dimensional quantum key distribution protocol. High-dimensional quantum key distribution is a technique that provides higher information efficiency compared to conventional quantum key distribution systems. We simulate this communication protocol using a device fabricated using silicon-on-insulator material. We have used this material since its fabrication technology is well established for integrated optics. We analytically show that integrated optics technology can be used to implement conventional quantum key distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, (2010). https://doi.org/10.1017/CBO9780511976667

  2. ...R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, P. Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, A. Zeilinger, Using quantum key distribution for cryptographic purposes: A survey. Theor. Comput. Sci. 560, 62–81 (2014). https://doi.org/10.1016/j.tcs.2014.09.018

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Etcheverry, G. Cañas, E.S. Gómez, W.A.T. Nogueira, C. Saavedra, G.B. Xavier, G. Lima, Quantum key distribution session with 16-dimensional photonic states. Sci. Rep. 3, 2316 (2013). https://doi.org/10.1038/srep02316

    Article  ADS  Google Scholar 

  4. Y. Wang, G.-H. Du, Y.-B. Xu, C. Zhou, M.-S. Jiang, H.-W. Li, W.-S. Bao, Practical security of high-dimensional quantum key distribution with intensity modulator extinction. Entropy 24, 460 (2022). https://doi.org/10.3390/e24040460

    Article  ADS  MathSciNet  Google Scholar 

  5. Abid, R., Aslam, B., Shakeel, S., Ahmad, F., Rizwan, M.: Implementation of high dimensional-qkd using bb84 protocol in the security of aerospace industry. In: 2019 International Conference on Innovative Computing (ICIC), pp. 1–11 (2019). doi:10.1109/ICIC48496.2019.8966690

  6. M.Y. Niu, F. Xu, J.H. Shapiro, F. Furrer, Finite-key analysis for time-energy high-dimensional quantum key distribution. Phys. Rev. A 94, 052323 (2016). https://doi.org/10.1103/PhysRevA.94.052323

    Article  ADS  Google Scholar 

  7. Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, L.K. Oxenløwe, High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. Quant. Inf. 3, 25 (2017). https://doi.org/10.1038/s41534-017-0026-2

    Article  Google Scholar 

  8. N.J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Security of quantum key distribution using \(\mathit{d}\)-level systems. Phys. Rev. Lett. 88, 127902 (2002). https://doi.org/10.1103/PhysRevLett.88.127902

    Article  ADS  Google Scholar 

  9. R.K. Ramakrishnan, S.A. Samad, K. Archana, T.R. Yadunath, P.P. Das, S. Talabattula, Integrated optics-based quantum communication devices. Adv. Photon. Quant. Comput. Memory Commun. (2017). https://doi.org/10.1117/12.2251091

    Article  Google Scholar 

  10. Bennett, C.H., Brassard, G.: Proceedings of the ieee international conference on computers, systems and signal processing. IEEE New York (1984)

  11. C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  MATH  Google Scholar 

  12. ...J. Yin, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, S.-L. Li, R. Shu, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, X.-B. Wang, F. Xu, J.-Y. Wang, C.-Z. Peng, A.K. Ekert, J.-W. Pan, Entanglement-based secure quantum cryptography over 1120 kilometres. Nature 582, 501–505 (2020). https://doi.org/10.1038/s41586-020-2401-y

    Article  ADS  Google Scholar 

  13. E. Diamanti, A step closer to secure global communication. Nature 582, 494–495 (2020). https://doi.org/10.1038/d41586-020-01779-7

    Article  ADS  Google Scholar 

  14. H. Semenenko, P. Sibson, A. Hart, M.G. Thompson, J.G. Rarity, C. Erven, Chip-based measurement-device-independent quantum key distribution. Optica 7, 238 (2020). https://doi.org/10.1364/OPTICA.379679

    Article  ADS  Google Scholar 

  15. K. Wei, W. Li, H. Tan, Y. Li, H. Min, W.-J. Zhang, H. Li, L. You, Z. Wang, X. Jiang, T.-Y. Chen, S.-K. Liao, C.-Z. Peng, F. Xu, J.-W. Pan, High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X 10, 031030 (2020). https://doi.org/10.1103/PhysRevX.10.031030

    Article  Google Scholar 

  16. L.-C. Kwek, L. Cao, W. Luo, Y. Wang, S. Sun, X. Wang, A.Q. Liu, Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021). https://doi.org/10.1007/s43673-021-00017-0

    Article  ADS  Google Scholar 

  17. T.K. Paraíso, T. Roger, D.G. Marangon, I.D. Marco, M. Sanzaro, R.I. Woodward, J.F. Dynes, Z. Yuan, A.J. Shields, A photonic integrated quantum secure communication system. Nat. Photon. 15, 850–856 (2021). https://doi.org/10.1038/s41566-021-00873-0

    Article  ADS  Google Scholar 

  18. C.H. Bennett, Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992). https://doi.org/10.1103/PhysRevLett.68.3121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. C.H. Bennett, G. Brassard, N.D. Mermin, Quantum cryptography without bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992). https://doi.org/10.1103/PhysRevLett.68.557

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Ekert, Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Win, M.S., Khin, T.T.: Analysis of quantum key distribution protocols. In: 2023 IEEE Conference on Computer Applications (ICCA), pp. 357–362 (2023). doi:10.1109/ICCA51723.2023.10181682

  22. S. Sun, A. Huang, A review of security evaluation of practical quantum key distribution system. Entropy (2022). https://doi.org/10.3390/e24020260

    Article  MathSciNet  Google Scholar 

  23. W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802–803 (1982). https://doi.org/10.1038/299802a0

    Article  ADS  MATH  Google Scholar 

  24. T. Zhong, H. Zhou, R.D. Horansky, C. Lee, V.B. Verma, A.E. Lita, A. Restelli, J.C. Bienfang, R.P. Mirin, T. Gerrits, S.W. Nam, F. Marsili, M.D. Shaw, Z. Zhang, L. Wang, D. Englund, G.W. Wornell, J.H. Shapiro, F.N.C. Wong, Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding. New J. Phys. 17, 022002 (2015). https://doi.org/10.1088/1367-2630/17/2/022002

    Article  ADS  Google Scholar 

  25. D. Cozzolino, B.D. Lio, D. Bacco, L.K. Oxenløwe, High-dimensional quantum communication: Benefits, progress, and future challenges. Adv. Quant. Technol. (2019). https://doi.org/10.1002/qute.201900038

    Article  Google Scholar 

  26. L. Sheridan, V. Scarani, Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301 (2010). https://doi.org/10.1103/PhysRevA.82.030301

    Article  ADS  Google Scholar 

  27. Z. Liu, H. Fan, Decay of multiqudit entanglement. Phys. Rev. A 79, 064305 (2009). https://doi.org/10.1103/PhysRevA.79.064305

    Article  ADS  MathSciNet  Google Scholar 

  28. Y. Wang, Z. Hu, B.C. Sanders, S. Kais, Qudits and high-dimensional quantum computing. Front. Phys. (2020). https://doi.org/10.3389/fphy.2020.589504

    Article  Google Scholar 

  29. Y. Jo, H. Park, S.-W. Lee, W. Son, Efficient high-dimensional quantum key distribution with hybrid encoding. Entropy 21, 80 (2019). https://doi.org/10.3390/e21010080

    Article  ADS  Google Scholar 

  30. Sulimany, K., Dudkiewicz, R., Korenblit, S., Eisenberg, H.S., Bromberg, Y., Ben-Or, M.: Fast and simple one-way high-dimensional quantum key distribution, pp. 1–3. Optica Publishing Group. (2021). https://doi.org/10.1364/FIO.2021.FW1E.3

  31. Sulimany, K., Dudkiewicz, R., Korenblit, S., Eisenberg, H.S., Bromberg, Y., Ben-Or, M.: High-dimensional quantum key distribution with scrambled time-bin encoding, pp. 3–7. Optica Publishing Group. (2022). https://doi.org/10.1364/QUANTUM.2022.QM3B.7

  32. D. Martínez, E.S. Gómez, J. Cariñe, L. Pereira, A. Delgado, S.P. Walborn, A. Tavakoli, G. Lima, Certification of a non-projective qudit measurement using multiport beamsplitters. Nat. Phys. (2022). https://doi.org/10.1038/s41567-022-01845-z

    Article  Google Scholar 

  33. Karácsony, M., Oroszlány, L., Zimborás, Z.: Efficient qudit based scheme for photonic quantum computing. arXiv (2023) arXiv:2302.07357

  34. Ramakrishnan, R.K., Talabattula, S.: High dimensional quantum key distribution: Bb84 protocol using qudits. (2014). doi:10.1364/PHOTONICS.2016.Th3A.77

  35. Salemian, S., Nejad, S.M.: A novel approach to implementation of quantum entanglement purification in optical quantum communication. In: 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, pp. 548–551 (2008). doi:10.1109/CSNDSP.2008.4610738

  36. C.M. Lalau-Keraly, S. Bhargava, O.D. Miller, E. Yablonovitch, Adjoint shape optimization applied to electromagnetic design. Opt. Express 21(18), 21693–21701 (2013)

    Article  ADS  Google Scholar 

  37. R.E. Christiansen, O. Sigmund, Inverse design in photonics by topology optimization: tutorial. JOSA B 38(2), 496–509 (2021)

    Article  ADS  Google Scholar 

  38. S. Molesky, Z. Lin, A.Y. Piggott, W. Jin, J. Vucković, A.W. Rodriguez, Inverse design in nanophotonics. Nat. Photon. 12(11), 659–670 (2018)

    Article  ADS  Google Scholar 

  39. L. Su, A.Y. Piggott, N.V. Sapra, J. Petykiewicz, J. Vuckovic, Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. Acs Photon. 5(2), 301–305 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Rohit K Ramakrishnan wishes to acknowledge the Visvesvaraya PhD Scheme for Electronics and IT, Ministry of Electronics and Information Technology (MeitY), Government of India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit K. Ramakrishnan.

Ethics declarations

Declarations

This manuscript is a revised and extended version of our paper “Integrated optics-based quantum communication devices” presented in SPIE Photonics West 2017 [9]. The authors have no conflict of interests or financial interests in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, R.K., Mishra, A., Kumar, P. et al. Integrated multi-mode waveguide devices for quantum communication. J Opt (2023). https://doi.org/10.1007/s12596-023-01506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01506-1

Keywords

Navigation