Skip to main content
Log in

Plasmonic multi-wavelength random laser by gold nanoparticles doped into glass substrate

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Plasmonic thin random lasers have many applications in photonic sensors and communications. In this report, plasmonic thin random lasers were fabricated based on Au nanoparticles diffused doped a glass substrate. To this purpose, we use physical vapor deposition to produce a thin gold film, and using thermal annealing in the oven, we reach gold nanoparticles doped the glasses. Three samples were fabricated with these substrates, which were covered by different concentrations of Rhodamine 6G gain media and pumped by nanosecond green laser to record random lasing output. Our results show that in the middle concentration of Rh6G over the gold nanoparticles, we have good efficiency of random lasing with two separate lasing works compared to two other low and high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper can be obtained from the authors upon request.

References

  1. J. Yi, Yu. Yi, J. Shang, X. An, Tu. Bo, G. Feng, S. Zhou, Waveguide random laser based on a disordered ZnSe-nanosheets arrangement. Opt. Express 24(5), 5102 (2016). https://doi.org/10.1364/oe.24.005102

    Article  ADS  Google Scholar 

  2. S. Perumbilavil, A. Piccardi, R. Barboza, O. Buchnev, M. Kauranen, G. Strangi, Assanto beaming random lasers with soliton control. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-06170-9

    Article  Google Scholar 

  3. S. Biswas, P. Kumbhakar, Continuous wave random lasing in naturally occurring biocompatible pigments and reduction of lasing threshold using triangular silver nanostructures as scattering media. Nanoscale 9(47), 18812–18818 (2017). https://doi.org/10.1039/c7nr06183h

    Article  Google Scholar 

  4. J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, T.A. Klar, Gold nanostars for random lasing enhancement. Opt. Express 23(12), 15152 (2015). https://doi.org/10.1364/oe.23.015152

    Article  ADS  Google Scholar 

  5. Y.-J. Lee, C.-Y. Chou, Z.-P. Yang, T.B. Nguyen, Y.-C. Yao, T.-W. Yeh, M.-T. Tsai, H.-C. Kuo, Flexible random lasers with tunable lasing emissions. Nanoscale 10(22), 10403–10411 (2018). https://doi.org/10.1039/c8nr00229k

    Article  Google Scholar 

  6. X. Shi, Q. Chang, Y. Bian, H. Cui, Z. Wang, Line width-tunable random laser based on manipulating plasmonic scattering. ACS Photon. 6(9), 2245–2251 (2019). https://doi.org/10.1021/acsphotonics.9b00508

    Article  Google Scholar 

  7. M. Humar, S.H. Yun, Intracellular microlasers. Nat. Photon. 9(9), 572–576 (2015). https://doi.org/10.1038/nphoton.2015.129

    Article  ADS  Google Scholar 

  8. M. Schubert, A. Steude, P. Liehm, N.M. Kronenberg, M. Karl, E.C. Campbell, S.J. Powis, M.C. Gather, Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett. 15(8), 5647–5652 (2015). https://doi.org/10.1021/acs.nanolett.5b02491

    Article  ADS  Google Scholar 

  9. B. Redding, M.A. Choma, H. Cao, Speckle-free laser imaging using random laser illumination. Nat. Photonics 6(6), 355–359 (2012). https://doi.org/10.1038/nphoton.2012.90

    Article  ADS  Google Scholar 

  10. A. Boschetti, A. Taschin, P. Bartolini, A.K. Tiwari, L. Pattelli, R. Torre, D.S. Wiersma, Spectral super-resolution spectroscopy using a random laser. Nat. Photonics 14(3), 177–182 (2019). https://doi.org/10.1038/s41566-019-0558-4

    Article  ADS  Google Scholar 

  11. F. Tommasi, E. Ignesti, L. Fini, F. Martelli, S. Cavalieri, Random laser based method for direct measurement of scattering properties. Opt. Express 26(21), 27615 (2018). https://doi.org/10.1364/oe.26.027615

    Article  ADS  Google Scholar 

  12. E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, S. Cavalieri, A new class of optical sensors: a random laser based device. Sci. Rep. (2016). https://doi.org/10.1038/srep35225

    Article  Google Scholar 

  13. Q. Song, S. Xiao, Xu. Zhengbin, V.M. Shalaev, Y.L. Kim, Random laser spectroscopy for nanoscale perturbation sensing. Opt. Lett. 35(15), 2624 (2010). https://doi.org/10.1364/ol.35.002624

    Article  ADS  Google Scholar 

  14. S. Sugavanam, M. Sorokina, D.V. Churkin, Spectral correlations in a random distributed feedback fibre laser. Nat. Commun. (2017). https://doi.org/10.1038/ncomms15514

    Article  Google Scholar 

  15. M. Leonetti, C. Conti, C. Lopez, Switching and amplification in disordered lasing resonators. Nat. Commun. (2013). https://doi.org/10.1038/ncomms2777

    Article  Google Scholar 

  16. T. Okamoto, F. H’Dhili, S. Kawata, Towards plasmonic band gap laser. Appl. Phys. Lett. 85(18), 3968–3970 (2004). https://doi.org/10.1063/1.1814793

    Article  ADS  Google Scholar 

  17. L. Cui, J. Shi, Y. Wang, R. Zheng, X. Chen, W. Gong, D. Liu, Retrieval of contaminated information using random lasers. Appl. Phys. Lett. 106(20), 201101 (2015). https://doi.org/10.1063/1.4921327

    Article  ADS  Google Scholar 

  18. T. Zhai, X. Zhang, Z. Pang, Su. Xueqiong, H. Liu, S. Feng, Li. Wang, Random laser based on waveguided plasmonic gain channels. Nano Lett. 11(10), 4295–4298 (2011). https://doi.org/10.1021/nl2023096

    Article  ADS  Google Scholar 

  19. X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, J. Shi, Random lasing with a high quality factor over the whole visible range based on cascade energy transfer. Adv. Opt. Mater. 2(1), 88–93 (2013). https://doi.org/10.1002/adom.201300299

    Article  ADS  Google Scholar 

  20. H.R. Humud, S.F. Haddawi, R.A. Ejbarah, A.K. Kodeary, S.M. Hamidi, Low threshold and coherence random laser based on ZnO nanorods. AIP Conf. Proc. (2021). https://doi.org/10.1063/5.0066122

    Article  Google Scholar 

  21. A.V. Kabashin, M. Meunier, Visible photoluminescence from nanostructured Si-based layers produced by air optical breakdown on silicon. Appl. Phys. Lett. 82(10), 1619–1621 (2003). https://doi.org/10.1063/1.1557752

    Article  ADS  Google Scholar 

  22. X. Meng, K. Fujita, S. Murai, T. Matoba, K. Tanaka, Plasmonically controlled lasing resonance with metallic−dielectric core−shell nanoparticles. Nano Lett. 11(3), 1374–1378 (2011). https://doi.org/10.1021/nl200030h

    Article  ADS  Google Scholar 

  23. O. Popov, A. Zilbershtein, D. Davidov, Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength.". Appl. Phys. Lett. 89(19), 191116 (2006). https://doi.org/10.1063/1.2364857

    Article  ADS  Google Scholar 

  24. S.F. Haddawi, A.K. Kodeary, N.S. Shnan, H.R. Humud, S.M. Hamidi, Light emitting polymers in two dimensional plasmonic multi wavelength random laser. Optik 231, 166437 (2021). https://doi.org/10.1016/j.ijleo.2021.166437

    Article  ADS  Google Scholar 

  25. S.F. Haddawi, M. Mirahmadi, H. Mbarak, A.K. Kodeary, M. Ghasemi, S.M. Hamidi, Footprint of plexcitonic states in low-power green–blue plasmonic random laser. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-3139-y

    Article  Google Scholar 

  26. M. Mosleh, M. Ranjbaran, S.M. Hamidi, M.M. Tehranchi, Ellipsometric spectroscopy of rubidium vapor cell at near-normal incidence. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  27. R.A. Ejbarah, J.M. Jassim, H. Yazdanfar, S.M. Hamidi, Random laser action in the visible region by dye-based sliver nano-hexagonal colloid media. Phys. Scr. 96(11), 115505 (2021). https://doi.org/10.1088/1402-4896/ac14e1

    Article  Google Scholar 

  28. S. Chauhan, S. Mukherjee, A. Varanytsia, C.T. Hou, L. Zou, L.C. Chien, Efficient random lasing in topologically directed assemblies of blue-phase liquid crystal microspheres. Opt. Mater. Express 10(9), 2030 (2020). https://doi.org/10.1364/ome.399169

    Article  ADS  Google Scholar 

  29. B. Redding, M.A. Choma, H. Cao, Spatial coherence of random laser emission. Opt. Lett. 36(17), 3404 (2011). https://doi.org/10.1364/ol.36.003404

    Article  ADS  Google Scholar 

Download references

Funding

There is no any finding.

Author information

Authors and Affiliations

Authors

Contributions

MM did the optical measurement, analyzed the results, and wrote the main text of the manuscript. JJ and SMH supervise the measurement part and wrote the results of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. M. Hamidi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This declaration is “not applicable.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddawi, M.F., Jassim, J.M. & Hamidi, S.M. Plasmonic multi-wavelength random laser by gold nanoparticles doped into glass substrate. J Opt 53, 876–882 (2024). https://doi.org/10.1007/s12596-023-01315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01315-6

Keywords

Navigation