Skip to main content
Log in

Strong self-focusing of an intense cosh-Gaussian laser beam in magnetized plasma under relativistic effect

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This work presents the self-focusing of an intense cosh-Gaussian laser beam in a magnetized plasma under relativistic nonlinearity. The field distribution of the beam in the plasma is expressed as the beam width parameter (f0) and the decentered parameter (b). The magnetic field is applied in the direction of propagation of the laser field. The nonlinear differential equation for the beam width parameter of the cosh-Gaussian laser beam is established by following the Wentzel–Kramers–Brillouin (WKB) and higher-order paraxial approximations. The self-focusing of a cosh-Gaussian beam is studied at various values of the decentered parameter of the beam, magnetic field, relative plasma density and incident laser intensity. The results are presented for the established set of laser and plasma parameters. Numerical results suggest that these parameters play a major role in the stronger and earlier self-focusing of cosh-Gaussian laser beam in the plasma. The results have also been compared with the paraxial-ray approximation and the Gaussian profile of the laser beam. In addition, the self-trapping of the beam is studied under various parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. T. Tajima, G.A. Mourou, Zettawatt-exawatt lasers and their applications in ultra-strong field physics. Phys. Rev. ST Accel. Beams. 5(3), 031301 (2002)

    Article  ADS  Google Scholar 

  2. H. Kiriyama, M. Mori, A.S. Pirozhkov, K. Ogura, A. Sagisaka, A. Kon, Zh. Timur, Y. Esirkepov, H. Hayashi, M. Kotaki, H. Kanasaki, Y. Sakaki, J. Fukuda, M. Koga, M. Nishiuchi, S.V. Kando, K. Bulanov, P.R. Kondo, O. Bolton, D. Slezak, M. Vojna, V. Sawicka-Chyla, A. Jambunathan, T.M. Lucianetti, High-contrast, high-intensity petawatt-class laser and applications. IEEE J. Sel. Top. Quantum Electron. 21(1), 232–249 (2015)

    Article  ADS  Google Scholar 

  3. H.K. Malik, Laser-matter interaction for radiation and energy (CRC Press, 2021)

    Book  Google Scholar 

  4. R. Betti, O. Hurricane, Inertial-confinement fusion with lasers. Nature Phys. 12(5), 435–448 (2016)

    Article  ADS  Google Scholar 

  5. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81(3), 1229–1286 (2009)

    Article  ADS  Google Scholar 

  6. D.A. Jaroszynski, R. Bingham, E. Brunetti, B. Ersfeld, J. Gallacher, B. van der Geer, R. Issac, S.P. Jamison, D. Jones, M. de Loos, A. Lyachev, V. Pavlov, A. Reitsma, Y. Saveliev, G. Vieux, S.M. Wiggins, Radiation sources based on laser–plasma interactions. Phil. Trans. R. Soc. A 364(1840), 689–710 (2006)

    Article  ADS  Google Scholar 

  7. R.Y. Chiao, T. Gustafson, P. Kelley, Self-focusing of optical beams, in Self-focusing: past and present, topics in applied physics. ed. by R.W. Boyd, S.G. Lukishova, Y. Shen (Springer, 2009)

    Google Scholar 

  8. W.B. Mori, C. Joshi, J.M. Dawson, D.W. Forslund, J.M. Kindel, Evolution of self-focusing of intense electromagnetic waves in plasma. Phys. Rev. Lett. 60(13), 1298–1301 (1988)

    Article  ADS  Google Scholar 

  9. M.D. Feit, A.M. Komashko, A.M. Rubenchik, Relativistic self-focusing in underdense plasma. Physica D 152(5), 705–713 (2001)

    Article  ADS  MATH  Google Scholar 

  10. S.D. Patil, M.V. Takale, V.J. Fulari, D.N. Gupta, H. Suk, Combined effect of ponderomotive and relativistic self-focusing on laser Beam propagation in a plasma. Appl. Phys. B 111(1), 1–6 (2013)

    Article  ADS  Google Scholar 

  11. B. Hafizi, A. Ting, P. Sprangle, R.F. Hubbard, Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62(3), 4120–4125 (2000)

    Article  ADS  Google Scholar 

  12. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi 10(5), 609–636 (1968)

    Article  ADS  Google Scholar 

  13. H. Hora, Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65(8), 882–886 (1975)

    Article  ADS  Google Scholar 

  14. M.S. Sodha, A.K. Ghatak, V.K. Tripathi, Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169–265 (1976)

    Article  ADS  Google Scholar 

  15. G.Z. Sun, E. Ott, Y.C. Lee, P. Guzdar, Self-focusing of short intense pulses in plasmas. Phys. Fluids 30(2), 526–532 (1987)

    Article  ADS  Google Scholar 

  16. P. Sprangle, C.M. Tang, E. Esarey, Relativistic self-focusing of short-pulse radiation beams in plasmas. IEEE Trans. Plasma Sci. 15(2), 145–153 (1987)

    Article  ADS  Google Scholar 

  17. H.S. Brandi, C. Manus, G. Mainfray, T. Lehner, G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma I. Paraxial approximation. Phys. Fluids B 5(10), 3539–3550 (1994)

    Article  ADS  Google Scholar 

  18. G. Mainfray, Relativistic self-focusing of an ultra-intense laser pulse in a plasma. J. Nonlinear Optic. Phys. Mat. 4(3), 547–566 (1995)

    Article  ADS  Google Scholar 

  19. A. Sharma, V.K. Tripathi, Relativistic and ponderomotive self-focusing of a laser pulse in magnetized plasma. Laser Part. Beams 30(4), 659–664 (2012)

    Article  ADS  Google Scholar 

  20. M.R. Jafari Milani, A.R. Niknam, A.H. Farahbod, Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma. Phys. Plasmas 21(6), 063107 (2014)

    Article  ADS  Google Scholar 

  21. H.K. Malik, L. Devi, Relativistic self-focusing and frequency shift of super-Gaussian laser beam in plasma. Results Phys. 17, 103070 (2020)

    Article  Google Scholar 

  22. H.K. Malik, L. Devi, On validity of paraxial theory for super-Gaussian laser beams propagating in a plasma. J. Theor. Appl. Phys. 11(3), 165–170 (2017)

    Article  Google Scholar 

  23. A. Sharma, S. Misra, S.K. Mishra, I. Kourakis, Dynamics of dark hollow Gaussian laser pulses in relativistic plasma. Phys. Rev. E 87(6), 063111 (2013)

    Article  ADS  Google Scholar 

  24. T.S. Gill, R. Kaur, R. Mahajan, Self-focusing of super-Gaussian laser beam in magnetized plasma under relativistic and ponderomotive regime. Optik 126(18), 1683–1690 (2015)

    Article  ADS  Google Scholar 

  25. V. Nanda, N. Kant, M.A. Wani, Self-focusing of a hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile. Phys. Plasmas 20(11), 113109 (2013)

    Article  ADS  Google Scholar 

  26. V. Thakur, M.A. Wani, N. Kant, Relativistic self-focusing of hermite-cosine-Gaussian laser beam in collisionless plasma with exponential density transition. Commun. Theor. Phys. 71(6), 736–740 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. K.M. Gavade, T.U. Urunkar, B.D. Vhanmore, A.T. Valkunde, M.V. Takale, S.D. Patil, Self-focusing of hermite-cosh Gaussian laser beams in a plasma under a weakly relativistic and ponderomotive regime. J. Appl. Spectrosc. 87(3), 499–504 (2020)

    Article  ADS  Google Scholar 

  28. H. Kumar, M. Aggarwal, T.S. Richa Gill, Self-focusing of an elliptic-Gaussian laser beam in relativistic ponderomotive plasma using a ramp density profile. J. Opt. Soc. Am. B 35(7), 1635–1641 (2018)

    Article  ADS  Google Scholar 

  29. R. Kashyap, M. Aggarwal, T.S. Gill, N.S. Arora, H. Kumar, D. Moudhgill, Self-focusing of q-Gaussian laser beam in relativistic plasma under the effect of light absorption. Optik 182(4), 1030–1038 (2019)

    Article  ADS  Google Scholar 

  30. M. Aggarwal, S. Vij, N. Kant, Propagation of circularly polarized quadruple Gaussian laser beam in magnetoplasma. Optik 126(24), 5710–5714 (2015)

    Article  ADS  Google Scholar 

  31. S. Konar, M. Mishra, S. Jana, Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media. Phys. Lett. A 362(5–6), 505–510 (2007)

    Article  ADS  Google Scholar 

  32. V. Nanda, N. Kant, M.A. Wani, Sensitiveness of decentered parameter for relativistic self-focusing of hermite-cosh-Gaussian laser beam in plasma. IEEE Trans. Plasma Sci. 41(8), 2251–2256 (2013)

    Article  ADS  Google Scholar 

  33. V. Nanda, N. Kant, Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp. Phys. Plasmas 21(7), 072111 (2014)

    Article  ADS  Google Scholar 

  34. T.U. Urunkar, S.D. Patil, A.T. Valkunde, B.D. Vhanmore, K.M. Gavade, M.V. Takale, On the exploration of graphical and analytical investigation of effect of critical beam power on self-focusing of cosh-Gaussian laser beams in collisionless magnetized plasma. Laser Part. Beams 36(2), 254–260 (2018)

    Article  ADS  Google Scholar 

  35. G. Purohit, R.K. Sharma, P. Kothiyal, Relativistic-ponderomotive effect on the self-focusing of a high-intensity cosh-Gaussian laser beam in plasma: higher-order paraxial regime. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00931-y

    Article  Google Scholar 

  36. M. Habibi, F. Ghamari, Significant enhancement in self-focusing of high-power laser beam through dense plasmas by ramp density profile. J. Opt. Soc. Am. B 32(7), 1429–1434 (2015)

    Article  ADS  Google Scholar 

  37. B. Gaur, P. Rawat, G. Purohit, Effect of self-focused cosh Gaussian laser beam on the excitation of electron plasma wave and particle acceleration. Laser Part. Beams 34(4), 621–630 (2016)

    Article  ADS  Google Scholar 

  38. P. Rawat, G. Purohit, Self-focusing of a cosh-Gaussian laser beam in magnetized plasma under relativistic-ponderomotive regime. Contri. Plasma Phys. 59(2), 226–235 (2018)

    Article  ADS  Google Scholar 

  39. G. Purohit, B. Gaur, A. Raizada, P. Kothiyal, Electron acceleration by a cosh-Gaussian laser beam driven electron plasma wave: extended paraxial theory. Opt. Quantum Electron. 53(10), 592 (2021)

    Article  Google Scholar 

  40. N. Gupta, S. Kumar, A Gnaneshwaran, Sanjeev Kumar & Suman Choudhry, Self-focusing of cosh-Gaussian laser beam in collisional plasma: effect of nonlinear absorption. J. Opt. 50(4), 701–711 (2021)

    Article  Google Scholar 

  41. C.S. Liu, V.K. Tripathi, Laser frequency upshift, self-defocusing, and ring formation in tunnel ionizing gases and plasmas. Phys. Plasmas 7(11), 4360–4363 (2000)

    Article  ADS  Google Scholar 

  42. M.S. Sodha, M. Faisal, Propagation of high-power electromagnetic beams in overdense plasmas: Higher order paraxial theory. Phys. Plasmas 15(3), 033102 (2008)

    Article  ADS  Google Scholar 

  43. P. Jha, R.K. Mishra, A.K. Upadhyaya, G. Raj, Self-focusing of intense laser beam in magnetized plasma. Phys. Plasmas 13(10), 103102 (2006)

    Article  ADS  Google Scholar 

  44. D.N. Gupta, H. Suk, Numerical Investigation on Self-Focusing during laser electron acceleration in a magnetized plasma. J. Korean Phys. Soc. 50(5), 1406–1410 (2007)

    Article  ADS  Google Scholar 

  45. M. Malekshahi, D. Dorranian, H.R. Askari, Self-focusing of the high intensity ultra-short laser pulse propagating through relativistic magnetized plasma. Opt. Commun. 332, 227–232 (2014)

    Article  ADS  Google Scholar 

  46. M.E. Abari, M. Sedaghat, M.T. Hosseinnejad, Self-focusing of a high-intensity laser pulse by a magnetized plasma lens in sub-relativistic regime. J. Theor. Appl. Phys. 11(2), 143–150 (2017)

    Article  ADS  Google Scholar 

  47. L. Devi, H.K. Malik, Role of magnetic field on self-focusing of super-Gaussian laser beam under relativistic effect. Optik 207, 164439 (2020)

    Article  ADS  Google Scholar 

  48. T.S. Gill, R. Mahajan, R. Kaur, Self-focusing of cosh-Gaussian laser beam in a plasma with weakly relativistic and ponderomotive regime. Phys. Plasmas 18(3), 033110 (2011)

    Article  ADS  Google Scholar 

  49. S.D. Patil, M.V. Takale, S.T. Navare, V.J. Fulari, M.B. Dongare, Relativistic self-focusing of cosh-Gaussian laser beams in a plasma. Opt. Laser Tech. 44(2), 314–317 (2012)

    Article  ADS  Google Scholar 

  50. S.D. Patil, M.V. Takale, Weakly relativistic ponderomotive effects on self-focusing in the interaction of cosh-Gaussian laser beams with a plasma. Laser Phys. Lett. 10(11), 115402 (2013)

    Article  ADS  Google Scholar 

  51. M. Aggarwal, S. Vij, N. Kant, Propagation of cosh Gaussian laser beam in plasma with density ripple in relativistic - Ponderomotive regime. Optik 125(18), 5081–5084 (2014)

    Article  ADS  Google Scholar 

  52. G. Purohit, B. Gaur, Self-focusing of cosh-Gaussian laser beam and its effect on the excitation of ion-acoustic wave and stimulated Brillouin backscattering in collisionless plasma. Opt. Quantum Electron. 51(12), 1–23 (2019)

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan Purohit.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purohit, G., Raizada, A. Strong self-focusing of an intense cosh-Gaussian laser beam in magnetized plasma under relativistic effect. J Opt 52, 564–572 (2023). https://doi.org/10.1007/s12596-022-01043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01043-3

Keyword

Navigation