Skip to main content
Log in

A new design of a tunable broadband ultra-thin THz metamaterial absorber basing on vanadium dioxide

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new design of a tunable broadband ultra-thin terahertz (THz) metamaterial absorber (MMA). The lowest layer of the absorber is vanadium dioxide (VO2) square ring layer embedded in the intermediate dielectric layer. The tunability of the MMA can be realized by changing the temperature-dependent conductivity of VO2. A total effective absorption band of 0.9 THz and three absorption peaks at higher frequencies can be achieved, which is different from most MMAs whose absorption bands are only at lower frequencies. In transverse electric (TE) mode, the proposed MMA is insensitive to the change of angle of incident waves in a wide range, and the absorptivity increases with the angle of incident waves in transverse magnetic (TM) mode. At the same time, we illustrate the relationship between absorptivity and polarization angle and verify that the proposed MMA is insensitive to polarization angle to a certain extent. In addition, the thickness of the proposed MMA is only 6.85 μm with the most basic sandwich structure which is simpler than most of the same type of the MMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Nagatsuma, G. Ducournau, C.C. Renaud, Advances in terahertz communications accelerated by photonics. Nat. Photonics 10(6), 371–379 (2016)

    ADS  Google Scholar 

  2. P.H. Siegel, Terahertz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)

    ADS  Google Scholar 

  3. P.U. Jepsen, D.G. Cooke, M. Koch, Terahertz spectroscopy and imaging - Modern techniques and applications. Laser. Photonics. Rev 5(1), 124–166 (2010)

    ADS  Google Scholar 

  4. S.J. Kindness, N.W. Almond, W. Michailow, B. Wei, K. Delfanazari, P. Braeuninger-Weimer, S. Hofmann, H.E. Beere, D.A. Ritchie, R. Degl’Innocenti, A terahertz chiral metamaterial modulator. Adv. Opt. Mater. 8(21), 2000581 (2020)

    Google Scholar 

  5. Y. Zhu, S. Vegesna, Y. Zhao, V. Kuryatkov, M. Holtz, Z. Fan, M. Saed, A.A. Bernussi, Tunable dual-band terahertz metamaterial bandpass filters. Opt. Lett. 38(14), 2382 (2013)

    ADS  Google Scholar 

  6. S. Wang, L. Kang, D.H. Werner, Hybrid resonators and highly tunable terahertz metamaterials Enabled by Vanadium Dioxide (VO2). Sci. Rep. 7(1), 4326 (2017)

    ADS  Google Scholar 

  7. H. Chen, Z. Chen, H. Yang, L. Wen, Z. Yi, Z. Zhou, B. Dai, J. Zhang, X. Wu, P. Wu, Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC. Adv. 12, 7821–7829 (2022)

    ADS  Google Scholar 

  8. Y.P. Li, H.-F. Zhang, T. Yang, T.Y. Sun, L. Zeng, A Multifunctional polarization converter base on the solid-state plasma Metasurface. IEEE J. Quantum. Elect. 56(2), 1–7 (2020)

    Google Scholar 

  9. M. Baah, A. Paddubskaya, A. Novitsky, N. Valynets, M. Kumar, T. Itkonen, M. Pekkarinen, E. Soboleva, E. Lahderanta, M. Kafesaki, Y. Svirko, P. Kuzhir, All-graphene perfect broadband THz absorber. Carbon 185, 709–716 (2021)

    Google Scholar 

  10. H.F. Zhang, H. Zhang, Y. Yao, J. Yang, J.X. Liu, A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators. IEEE Photonics. J. 10(4), 1–10 (2018)

    Google Scholar 

  11. H. Zhang, H.F. Zhang, G.B. Liu, H.M. Li, Ultra-broadband multilayer absorber with the lumped resistors and solid-state plasma. Results. Phys. 12, 917–924 (2019)

    ADS  Google Scholar 

  12. H. Zhang, J. Yang, H. Zhang, J. Liu, Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors. Opt. Mater. Express 8(8), 2103 (2018)

    ADS  Google Scholar 

  13. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)

    ADS  Google Scholar 

  14. F. Chen, Y. Cheng, H. Luo, A broadband Tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped graphene. Materials 13(4), 860 (2020)

    ADS  Google Scholar 

  15. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    ADS  Google Scholar 

  16. X. He, Tunable terahertz graphene metamaterials. Carbon 82, 229–237 (2015)

    Google Scholar 

  17. J.C. Deinert, D. Alcaraz Iranzo, R. Perez, X. Jia, H.A. Hafez, I. Ilyakov, N. Awari, M. Chen, M. Bawatna, A.N. Ponomaryov, S. Germanskiy, M. Bonn, F.H.L. Koppens, D. Turchinovich, M. Gensch, S. Kovalev, K.J. Tielrooij, Grating-graphene metamaterial as a platform for terahertz nonlinear photonics. ACS Nano 15(1), 1145–1154 (2021)

    Google Scholar 

  18. L. Liang, Z. Zhang, X. Yan, X. Ding, D. Wei, Q. Yang, Z. Li, J. Yao, Broadband terahertz transmission modulation based on hybrid graphene-metal metamaterial. J. Elect. Sci. Technol. 16(2), 98–104 (2018)

    Google Scholar 

  19. Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, Y. Liu, Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 97(2), 021111 (2010)

    ADS  Google Scholar 

  20. Z. Zheng, Y. Zheng, Y. Luo, Z. Yi, J. Zhang, Z. Liu, W. Yang, Y. Yu, X. Wu, P. Wu, A switchable terahertz device combining ultra-wideband absorption and ultra-widebandcomplete reflection. Phys. Chem. Chem. Phys. 24, 2527–2533 (2022)

    Google Scholar 

  21. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181 (2008)

    ADS  Google Scholar 

  22. S. Barimani, A. Amini, I. Chaharmahali, A four-bias three-layer graphene-based THz absorber. J. Comput. Electron. 20(3), 1332–1342 (2021)

    Google Scholar 

  23. M. Chen, W. Yan, X. Tong, L. Zeng, Z. Li, F. Yang, Metamaterials absorber based on doped semiconductor for THz and FIR frequency ranges. J. Opt. 21(3), 035102 (2019)

    ADS  Google Scholar 

  24. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-structured organometal halide perovskites. Science 338(6107), 643–647 (2012)

    ADS  Google Scholar 

  25. F. Chen, Y. Cheng, H. Luo, Temperature Tunable narrow-band terahertz Metasurface absorber based on InSb micro-cylinder arrays for enhanced sensing application. IEEE Access. 8, 82981–82988 (2020)

    Google Scholar 

  26. Y. Cheng, Z. Li, Z. Cheng, Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing. Opt. Mater. 117, 111129 (2021)

    Google Scholar 

  27. Q. Wen, H. Zhang, Y. Xie, Q. Yang, Y. Liu, Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl. Phys. Lett. 95(24), 241111 (2009)

    ADS  Google Scholar 

  28. M. Shabani, A. Mir, Design and Analysis of an Ultra-broadband polarization-independent wide-angle plasmonic THz absorber. IEEE J. Quantum. Elect. 57(3), 1–8 (2021)

    Google Scholar 

  29. X. Huang, C. Lu, C. Rong, S. Wang, M. Liu, Wide angle of incidence-insensitive polarization-independent THz metamaterial absorber for both TE and TM mode based on plasmon hybridizations. Materials 11(5), 671 (2018)

    ADS  Google Scholar 

  30. Z. Yi, J. Li, J. Lin, F. Qin, X. Chen, W. Yao, Z. Liu, S. Cheng, P. Wu, H. Li, Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array. Nanoscale 12(45), 23077–23083 (2020)

    Google Scholar 

  31. M. Faraji, M.K. Moravvej-Farshi, L. Yousefi, Tunable THz perfect absorber using graphene-based metamaterials. Opt. Commun. 355, 352–355 (2015)

    ADS  Google Scholar 

  32. L. Yang, H. Wang, X. Ren, X. Song, M. Chen, Y. Tong, Y. Ye, Y. Ren, S. Liu, S. Wang, L. Yin, J. Yao, Switchable terahertz absorber based on metamaterial structure with photosensitive semiconductor. Opt. Commun. 485, 126708 (2021)

    Google Scholar 

  33. Y. Dong, D. Yu, G. Li, G. Li, H. Ma, Tunable ultrathin ultrabroadband metamaterial absorber with graphene-stack-based structure at lower terahertz frequency. Physica. E 128, 114608 (2021)

    Google Scholar 

  34. Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, A.A. Bernussi, Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings. J. Opt. Soc. Am. B 29(9), 2373 (2012)

    ADS  Google Scholar 

  35. A. Cavalleri, C. Toth, C.W. Siders, J.A. Squier, F. Raksi, P. Forget, J.C. Kieffer, Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87(23), 237401 (2001)

    ADS  Google Scholar 

  36. A. Holsteen, I.S. Kim, L.J. Lauhon, Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition. Nano. Lett. 14(4), 1898–1902 (2014)

    ADS  Google Scholar 

  37. S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, D.H. Werner, Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study. Opt. Express 27(14), 19436–19447 (2019)

    ADS  Google Scholar 

  38. J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, S. Chang, Tunable broadband THz absorber using vanadium dioxide metamaterials. Opt. Commun. 452, 292–295 (2019)

    ADS  Google Scholar 

  39. H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, K. Aydin, Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Appl. Phys. Lett 106(16), 161104 (2015)

    ADS  Google Scholar 

  40. J. Liang, L. Hou, J. Li, Frequency tunable perfect absorber in visible and near-infrared regimes based on VO2 phase transition using planar layered thin films. J. Opt. Soc. Am. B 33(6), 1075 (2016)

    ADS  Google Scholar 

  41. C. Liu, J. Yin, S. Zhang, Temperature-tunable THz metamaterial absorber based on vanadium dioxide. Infrared Phys. Technol. 119, 103939 (2021)

    Google Scholar 

  42. G. Zhou, P. Dai, J. Wu, B. Jin, Q. Wen, G. Zhu, Z. Shen, C. Zhang, L. Kang, W. Xu, J. Chen, P. Wu, Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface. Opt. Express 25(15), 17322–17328 (2017)

    ADS  Google Scholar 

  43. M. Liu, H.Y. Hwang, H. Tao, A.C. Strikwerda, K. Fan, G.R. Keiser, A.J. Sternbach, K.G. West, S. Kittiwatanakul, J. Lu, S.A. Wolf, F.G. Omenetto, X. Zhang, K.A. Nelson, R.D. Averitt, Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487(7407), 345–348 (2012)

    ADS  Google Scholar 

  44. Y. Zhao, Q. Huang, H. Cai, X. Lin, Y. Lu, A broadband and switchable VO2-based perfect absorber at the THz frequency. Opt. Commun. 426, 443–449 (2018)

    ADS  Google Scholar 

  45. Y. Cheng, J. Liu, F. Chen, H. Luo, X. Li, Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves. Phys. Lett. A 402, 127345 (2021)

    Google Scholar 

  46. H.E. Su, J.L. Li, L. Xia, A novel temperature controlled BroadbandMetamaterial absorber for THz applications. IEEE Access. 7, 161255–161263 (2019)

    Google Scholar 

  47. R. Dao, X. Kong, H. Zhang, X. Su, A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide. Optik 180, 619–625 (2019)

    ADS  Google Scholar 

  48. R. Zhou, T. Jiang, Z. Peng, Z. Li, M. Zhang, S. Wang, L. Li, H. Liang, S. Ruan, H. Su, Tunable broadband terahertz absorber based on graphene metamaterials and VO2. Opt. Mater. 114, 110915 (2021)

    Google Scholar 

  49. H. Chen, Interference theory of metamaterial perfect absorbers. Opt. Express 20(7), 7165 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12075315 and 11675261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, Y., Chao, X. et al. A new design of a tunable broadband ultra-thin THz metamaterial absorber basing on vanadium dioxide. J Opt 52, 1269–1277 (2023). https://doi.org/10.1007/s12596-022-00977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00977-y

Keywords

Navigation