Skip to main content
Log in

The spectral responsivity improvement of Au@TiO2 via magnetic-field assisted laser ablation

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The aim of this research study is the effect external magnetic field on the structural, morphological, electrical and optical properties of Au@TiO2 films grown under various laser pulse energy 500, 660, and 820 mJ/pulse, as well as its potential for photodetector application. This process was carried by second harmonic 532 nm a Q-switching Nd:YAG laser. X-ray diffraction indicates the formation of a creation crystalline Au@TiO2 core shell through the existence of XRD peaks associated with Au and TiO2 NPs, with no structural changes after applying a magnetic field. In the case of applying a magnetic field, TEM demonstrates the creation of spherical Au@TiO2NPs, with reduced agglomeration and particle size from 27 to 17 nm. The optical properties revealed that the optical energy gap of Au@TiO2NPs was 3.6 eV at the B = 0 T eV, while the energy gap increased under the influence of effect of magnetic field through the process of ablation. The current–voltage characteristics of Au@TiO2/PS photodetectors were measured in the dark conditions. The maximum responsivity of the Au@TiO2/PS photodetector was 0.16 A/W at 450 nm while this responsive decreasing to 0.04 A/W after applying the magnetic field through the ablation process. Au@TiO2NPs appear to be a potential candidate for high-performance photo-detector applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. U. Nayef, R. Kamel, Bi2O3 nanoparticles ablated on porous silicon for sensing NO2 gas. Optik 208, 16416 (2020)

    Article  Google Scholar 

  2. F. Mutlak, A. Ahmed, U. Nayef, Q. Al-zaidi, Improvement of absorption light of laser texturing on silicon surface for optoelectronic application. Optik 237, 166755 (2021)

    Article  ADS  Google Scholar 

  3. M. Jabir, U. Nayef, W. Abdulkadhim, Z. Taqi, G. Sulaiman, U. Sahib, A. Al-Shammari, Y. Wu, M. El-Shazly, C. Su, Fe3O4 nanoparticles capped with PEG induce apoptosis in breast cancer AMJ13 cells via mitochondrial damage and reduction of NF-κB translocation. J. Inorg. Organomet. Polym. Mater. 31(3), 1241–1259 (2021). https://doi.org/10.1007/s10904-020-01791-4

    Article  Google Scholar 

  4. S. Khudiar, F. Mutlak, U. Nayef, Synthesis of ZnO nanostructures by hydrothermal method deposited on porous silicon for photo-conversion application. Optik 247, 167903 (2021)

    Article  ADS  Google Scholar 

  5. S. Khudiar, U. Nayef, F. Mutlak, Improvement of spectral responsivity of ZnO nanoparticles deposited on porous silicon via laser ablation in liquid. Optik 244, 167530 (2021). https://doi.org/10.1016/j.ijleo.2021.167530

    Article  ADS  Google Scholar 

  6. U. Nayef, M. Muayad, H. Khalaf, ZnO/PS/p-Si heterojunction properties. Physics 66(2), 20104 (2014). https://doi.org/10.1051/epjap/2014130470

    Article  Google Scholar 

  7. H. Abood, F. Mutlak, Structural, morphological and optical properties of n-type porous silicon-effect of etching current density. IOP Conf Ser. Mater. Sci. Eng. 757, 012065 (2020)

    Article  Google Scholar 

  8. J. Joo, T. Defforge, A. Loni, Z.Y. D Kim, M.J. Li, G.G. Sailor, L.T. Canham, Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying. Appl. Phys. Lett. 108, 153111 (2016). https://doi.org/10.1063/1.4947084

    Article  ADS  Google Scholar 

  9. U. Nayef, H. Hussein, A. Abdul Hussien, Study of photoluminescence quenching in porous silicon layers that using for chemical solvents vapor sensor. Optik 172, 1134–1139 (2018)

    Article  ADS  Google Scholar 

  10. R.I. Kamel, D.S. Ahmed, U.M. Nayef, Synthesis of Bi2O3 nanoparticles by laser ablation on porous silicon for photoconversion application. Optik 193, 163013 (2019). https://doi.org/10.1016/j.ijleo.2019.163013

    Article  ADS  Google Scholar 

  11. U. Nayef, K. Hubeatir, Z. Abdulkareem, Characterisation of TiO2 nanoparticles on porous silicon for optoelectronics application. Mater. Technol. Adv. Funct. Mater. 31, 884–889 (2016)

    ADS  Google Scholar 

  12. N. Abdulkhaleqa, A. Hasan, U. Nayef, Enhancement of photodetectors devices for silicon nanostructure from study effect of etching time by photoelectrochemical etching technique. Optik 206, 164325 (2020)

    Article  ADS  Google Scholar 

  13. F. Mutlak, Photovoltaic enhancement of Si micro- and nanostructure solar cells via ultrafast laser texturing. Turk. J. Phys. 38, 130–135 (2014). https://doi.org/10.3906/fiz-1302-2

    Article  Google Scholar 

  14. SM Gupta, M Tripathi, Areviewof TiO2 nanoparticles, Chin Sci Bull 56(16), 1639–1657 (2011).

    Article  Google Scholar 

  15. S. Noothongkaew, J.K. Han, Y.B. Lee, O. Thumthan, K. An, Au NPs decorated TiO2 nanotubes array candidate for UV photodetectors. Prog. Nat. Sci.: Mater. Int. 27, 641–646 (2017). https://doi.org/10.1016/j.pnsc.2017.10.001

    Article  Google Scholar 

  16. N.A. Abdulkhaleq, U. Nayef, A. Albarazanchi, MgO nanoparticles synthesis via laser ablation stationed on porous silicon for photoconversion application. Optik 212, 164793 (2020). https://doi.org/10.1016/j.ijleo.2020.164793

    Article  ADS  Google Scholar 

  17. F. Mutlak, R. Jamal, A. Ahmed, Pulsed laser deposition of TiO2 Nanostructures for Verify the Linear and Non-Linear Optical Characteristics. Iraqi J. Sci. 62, 517–525 (2021)

    Article  Google Scholar 

  18. J. Lin, M. Guo, C.T. Yip, High temperature crystallization of free-standing anatasenTiO2 nanotube membranes for high efficiency dye sensitized solar cells. Adv. Funct. Matter 23, 5952–5960 (2013)

    Article  Google Scholar 

  19. V.C. Anitha, B.N. Arghya, S.W. Joo, B. Ki, Min, “Barrier oxide layer engineering of TiO2 nanotube arrays to get single and multistage Y-branched nanotubes: effect of voltage ramping and electrolyte conductivity.” Mater. Sci. Eng. B 195, 1–11 (2015)

    Article  Google Scholar 

  20. M. Yang, J.L. Zhu, W. Liu, J.L. Sun, Novel photodetectors based on double-walled carbon nanotube Film/TiO2 nanotube array heterodimensional contacts. Nano Res. 4, 901–907 (2011)

    Article  Google Scholar 

  21. S.M. Hong, S. Lee, H.J. Jung, Simple preparation of anatase TiO2 nanoparticles via pulsed laser ablation in liquid. Bull. Korean Chem. Soc. 34, 279–282 (2013)

    Article  Google Scholar 

  22. F. Barreca, N. Acacia, E. Barletta, D. Spadaro, G. Curro, F. Neri, Small size TiO2 nanoparticles prepared by laser ablation in water. Appl. Surf. Sci. 256, 6408–6412 (2010)

    Article  ADS  Google Scholar 

  23. H. Hussein, U. Nayef, A. Abdul Hussien, Synthesis of graphene on porous silicon for vapor organic sensor by using photoluminescence. Optik 180, 61–70 (2019)

    Article  ADS  Google Scholar 

  24. G. Hartland, Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011)

    Article  Google Scholar 

  25. J. Zhu, H.F. Du, Q. Zhang et al., SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating. J. Mater. Chem. C 7, 3322–3334 (2019)

    Article  Google Scholar 

  26. T. Sau, A.L. Rogach, F. Jackel, T.A. Klar, J. Feldmann, Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 22, 1805–1825 (2010)

    Article  Google Scholar 

  27. H. Abid, U. Nayef, F. Mutlak, Preparation and characterization Co3O4 nanoparticles on porous silicon for humidity sensor by photoluminescence. Optik 178, 379–383 (2019)

    Article  ADS  Google Scholar 

  28. N. Nguyen, M. Altomare, J. Yoo, P. Schmuki, Efficient photocatalytic H-2 evolution: controlled dewetting-dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Adv. Mater. 27, 3208–3215 (2015)

    Article  Google Scholar 

  29. G.Q. Liu, Y. Liu, L. Tang, X.S. Liu, G.L. Fu, Z.Q. Liu, Semiconductor enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures. Nanophotonics 8, 1095–1107 (2019)

    Article  Google Scholar 

  30. M. Murawska, A. Skrzypczak, M. Kozak, Structure and morphology of gold nanoparticles in solution studied by TEM, SAXS and UV-Vis. ACTA Phys. Polonica A 121, 888 (2012)

    Article  ADS  Google Scholar 

  31. M. Abed, F.A. Mutlak, A. Ahmed, U. Nayef, S. Abdulridha, M. Jabir, Synthesis of Ag/Au (core/shell) nanoparticles by laser ablation in liquid and study of their toxicity on blood human components. J. Phys.: Conf. Ser. 1795, 012013 (2021)

    Google Scholar 

  32. C. Albornoz, S. Jacobo, Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J. Magn. Magn. Mater. 305, 12–15 (2006)

    Article  ADS  Google Scholar 

  33. J.X. Wan, X.Y. Chen, Z.H. Wang, A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. Cryst. Growth 276, 571–576 (2005)

    Article  ADS  Google Scholar 

  34. I. Martínez-Mera, M.E. Espinosa-Pesqueira, R. Pérez-Hernández, J. Arenas-Alatorre, Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Mater. Lett. 61, 4447–4451 (2007)

    Article  Google Scholar 

  35. A Hahn, S. Barcikowski, BN Chichkov, J.Laser Micro/Nanoeng. 3, 73 (2008).

    Article  Google Scholar 

  36. K. Sasaki, N. Takada, Liquid-phase laser ablation. Pure Appl. Chem. 82(6), 1317–1327 (2010)

    Article  Google Scholar 

  37. U. Nayef, I. Khudhair, E. Kayahan, Organic vapor sensor using photoluminescence of laser ablated gold nanoparticles on porous silicon. Optik 144, 546–552 (2017)

    Article  ADS  Google Scholar 

  38. R.K. Jamal, F.A.H. Mutlak, F.T. Ibrahim, U.M. Nayef, Synthesis of Ag2O films by pulsed laser deposited on porous silicon as gas sensor application. Optik 218, 164971 (2020). https://doi.org/10.1016/j.ijleo.2020.164971

    Article  ADS  Google Scholar 

  39. U.M. Nayef, I.M. Khudhair, Study of porous silicon humidity sensor vapors by photoluminescence quenching for organic solvents. Optik 135, 169–173 (2017). https://doi.org/10.1016/j.ijleo.2017.01.060

    Article  ADS  Google Scholar 

  40. T. Rashid, U. Nayef, M. Jabir, F. Mutlak, Synthesis and characterization of Au:ZnO (core:shell) nanoparticles via laser ablation. Optik 244, 167569 (2021)

    Article  ADS  Google Scholar 

  41. T. Rashid, U. Nayef, M. Jabir, F. Mutlak, Study of optical and morphological properties for Au–ZnO nanocomposite prepared by laser ablation in liquid. J. Phys.: Conf. Ser. 1795, 012041 (2021). https://doi.org/10.1088/1742-6596/1795/1/012041

    Article  Google Scholar 

  42. D. Jwied, U. Nayef, F. Mutlak, Preparation and characterization of C: Se nano-rods ablated on porous silicon. Optik 239, 166811 (2021). https://doi.org/10.1016/j.ijleo.2021.166811

    Article  ADS  Google Scholar 

  43. A. Hussain, Q. Li, Z. Hao, X. Gao, J. Lin, The effect of an external magnetic field on the plume expansion dynamics of laser-induced aluminum plasma. Plasma Sci. Technol. 17, 693–698 (2015). https://doi.org/10.1088/1009-0630/17/8/14

    Article  ADS  Google Scholar 

  44. Y. Chen, B. Zhu, M. Yao, S. Wang, S. Zhang, The preparation and characterization of Au@TiO2 nanoparticles and their catalytic activity for CO oxidation. Catal. Commun. 11, 1003–1007 (2010). https://doi.org/10.1016/j.catcom.2010.03.018

    Article  Google Scholar 

  45. G. Wan, X. Peng, M. Zeng, L. Yu, K. Wang, X. Li, G. Wang, The preparation of Au@TiO2 yolk–shell nanostructure and its applications for degradation and detection of methylene blue. Nanoscale Res. Lett. 12, 1–9 (2017)

    Article  ADS  Google Scholar 

  46. F. Fu, Y. Zhang, Z. Zhang, X. Zhang, Y. Chen, Y. Zhang, The preparation and performance of Au loads TiO2 nanomaterials. Mater. Res. Express 6, 095041 (2019)

    Article  ADS  Google Scholar 

  47. C. Rodríguez-Martínez, A.E. García-Domínguez, F. Guerrero-Robles, R.O. Saavedra-Díaz, G. Torres-Torres, C. Felipe, R. Ojeda-López, A. Silahua-Pavón, A. Cervantes-Uribe, Synthesis of supported metal nanoparticles (Au/TiO2) by the suspension impregnation method. J. Compos. Sci. 4, 89 (2020)

    Article  Google Scholar 

  48. H.-S. Chen, C. Su, J.-L. Chen, T.-Y. Yang, N.-M. Hsu, W.-R. Li, Preparation and characterization of pure rutile TiO2 nanoparticles for photocatalytic study and thin films for dye-sensitized solar cells. J. Nanomater. 2011, 1–8 (2011). https://doi.org/10.1155/2011/869618

    Article  Google Scholar 

  49. D.J. Ahmed, B.I. Al-abdaly, S.J. Hussein, Synthesis and characterization of high surface area nano titanium dioxide. J. Pet. Res. Stud. 11(4), 51–75 (2021). https://doi.org/10.52716/jprs.v11i4.563

    Article  Google Scholar 

  50. U. Nayef, R. Kamel, Enhancement the electrical properties of porous silicon for photo-detectors applications by depositing Bi2O3 nanoparticles. Optik 207, 163847 (2020). https://doi.org/10.1016/j.ijleo.2019.163847

    Article  ADS  Google Scholar 

  51. M.J. Sailor, J.L. Heinrich, J.M. Lauerhaas, Luminescent porous silicon: synthesis, chemistry, and applications. Stud. Surf. Sci. Catal. 103, 209–235 (1997)

    Article  Google Scholar 

  52. D. Jwied, U. Nayef, F. Mutlak, Synthesis of C:Se (core:shell) nanoparticles via laser ablation on porous silicon for photodetector application. Optik 231, 166493 (2021)

    Article  ADS  Google Scholar 

  53. F. Mutlak, A. Taha, U. Nayef, SILICON 10, 967–974 (2018)

    Article  Google Scholar 

  54. D. Jwied, U. Nayef, F. Mutlak, Improvement of responsivity of C: Se nanoparticles ablated on porous silicon. Optik 241, 167222 (2021). https://doi.org/10.1016/j.ijleo.2021.167222

    Article  ADS  Google Scholar 

  55. H. Bahjat, R. Ismail, G. Sulaima, Photodetection properties of populated Fe3O4@TiO2 core–shell/Si heterojunction prepared by laser ablation in water. Appl. Phys. A 128, 1–9 (2022)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday M. Nayef.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jwar, A.J., Nayef, U.M. & Mutlak, F.AH. The spectral responsivity improvement of Au@TiO2 via magnetic-field assisted laser ablation. J Opt 52, 1118–1130 (2023). https://doi.org/10.1007/s12596-022-00923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00923-y

Keywords

Navigation