Skip to main content
Log in

Photovoltaic performance of Gracilaria corticata seaweed extract as sensitizer in dye-sensitized solar cell

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Photovoltaic performance of a marine red seaweed Gracilaria corticata using acetone and methanol as extracting solvents was examined in a dye-sensitized solar cell (DSSC) integrated with TiO2 photoanode. The UV–vis absorption spectra and TLC analysis revealed the presence of natural photosynthetic pigments, such as chlorophyll a, chlorophyll b, pheophytin, and xanthophylls. DSSC performance parameters, such as short-circuit current density (Jsc) and open-circuit voltage (Voc), were directly measured from each current–voltage (J–V) characteristic curve, while the remaining photovoltaic parameters such as maximum current density (Jmax), maximum voltage (Vmax), maximum power (Pmax), fill factor (FF), and overall cell conversion efficiency (η) were calculated from the respective J–V characteristic curve. It is peculiar to note that DSSCs in both solvents disclosed a reasonably fill factor (FF). However, DSSCs sensitized by acetone extract of G. corticata exhibited relatively high photovoltaic performance (Jsc 0.82 mA cm2, Voc of 702 mV, impressive FF (0.73) and an efficiency of 0.42%), which was twofold higher than the DSSCs sensitized by methanol extract (efficiency 0.18%). The results suggest the use of seaweed pigments as low cost, eco-friendly viable to alternate DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)

    Article  ADS  Google Scholar 

  2. A. Raturi, Y. Fepuleai, Photosynthesis in a test tube-dye sensitized solar cells as a teaching tool. Renew. Energy. 35, 1010 (2010)

    Article  Google Scholar 

  3. G. Calogero, I. Citro, G.D. Marco, S.A. Minicante, M. Morabito, G. Genovese, Brown seaweed pigment as a dye source for photoelectrochemical solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 117, 702 (2014)

    Article  ADS  Google Scholar 

  4. Q.Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087 (2009)

    Article  Google Scholar 

  5. J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z.L. Wang, ZnO nanotube-based dye-sensitized solar cell and/its application in self-powered devices. Nanotechnology 21, 405203 (2010)

    Article  Google Scholar 

  6. X. Yin, X. Liu, L. Wang, B. Liu, Electrophoretic deposition of ZnO photoanode for plastic dye-sensitized solar cells. Electrochem. Commun. 12, 1241 (2010)

    Article  Google Scholar 

  7. H.M. Cheng, W.F. Hsieh, High-efficiency metal-free organic-dye-sensitized solar cells with hierarchical ZnO photoelectrode. Energy Environ. Sci. 3, 442 (2010)

    Article  Google Scholar 

  8. H. Chen, Z. Duan, Y.G. Lu, A.D. Pasquier, Dye-sensitized solar cells combining ZnO nanotip arrays and nonliquid gel electrolytes. J. Electron. Mater. 38, 1612 (2009)

    Article  ADS  Google Scholar 

  9. S. Hao, J. Wu, Y. Huang, J. Lin, Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energ. 80, 209 (2006)

    Article  ADS  Google Scholar 

  10. Y. Amao, T. Komori, Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosens. Bioelectron. 19, 843 (2004)

    Article  Google Scholar 

  11. K. Tennakone, A.R. Kumarasinghe, G.R.R.A. Kumara, K.G.U. Wijayantha, P.M. Sirimanne, Nanoporous TiO2 photoanode sensitized with the flower pigment cyaniding. J. Photochem. Photobiology A: Chem. 108, 193 (1997)

    Article  Google Scholar 

  12. N.J. Cherepy, G.P. Smestad, M. Grätzel, Zang, Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J. Phys. Chem. B 101, 9342 (1997)

    Article  Google Scholar 

  13. G.P. Smestad, Education and solar conversion: demonstrating electron transfer. Sol. Energ. Mater. Sol. C 55, 157 (1998)

    Article  Google Scholar 

  14. C.G. Garcia, A.S. Polo, N.Y. Iha, Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells. J. Photochem. Photobiology A: Chem. 160, 87 (2003)

    Article  Google Scholar 

  15. A.S. Polo, N.Y.M. Iha, Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol. Energ. Mater. Sol. C 90, 1936 (2006)

    Article  Google Scholar 

  16. G.R. Kumara, S. Kanebo, M. Okuya, B. Onwona-Agyeman, A. Konno, K. Tennakone, Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energ. Mater. Sol. C 90, 1220 (2006)

    Article  Google Scholar 

  17. M.R. Narayan, Review: dye sensitized solar cells based on natural photosensitizers. Renew. Sustain. Energy Rev. 16, 208 (2012)

    Google Scholar 

  18. S. Furukawa, H. Iino, T. Iwamoto, K. Kukita, S. Yamauchi, Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films 518, 526 (2009)

    Article  ADS  Google Scholar 

  19. H. Zhou, L. Wu, Y. Gao, T. Ma, Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiology A: Chem. 219, 188 (2011)

    Article  Google Scholar 

  20. H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo, Y.J. Lo, Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. J. Alloys Compd. 495, 606 (2010)

    Article  Google Scholar 

  21. W.H. Lai, Y.H. Su, L.G. Teoh, M.H. Hon, Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J. Photochem. Photobiology A: Chem. 195, 307 (2008)

    Article  Google Scholar 

  22. R. Mohammadpour, S. Janfaza, F. Abbaspour-Aghdam, Light harvesting and photocurrent generation by nanostructured photoelectrodes sensitized with a photosynthetic pigment: a new application for microalgae. Bioresour. Technol. 163, 1–5 (2014)

    Article  Google Scholar 

  23. A. Rapsomanikis, D. Sygkridou, E. Voutsinas, E. Stathatos, Transparent quasi-solid state dye-sensitized solar cells sensitized with naturally derived pigment extracted from red seaweed. Curr. Appl. Phys. 16, 651 (2016)

    Article  ADS  Google Scholar 

  24. X.F. Wang, C.H. Zhan, T. Maoka, Y. Wada, Y., Koyama, Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c′1 and c′2 from Undaria pinnatifida (Wakame). Chem. Phys. Lett. 447, 79 (2007)

    Article  ADS  Google Scholar 

  25. M. Anand, S. Suresh, Marine seaweed Sargassum wightii extract as a low-cost sensitizer for ZnO photoanode based dye-sensitized solar cell. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 035008 (2015)

    Article  ADS  Google Scholar 

  26. S.A. Minicante, E. Ambrosi, M. Back, J. Barichello, E. Cattaruzza, F. Gonella, E.E. Scantamburlo, Trave, Development of an eco-protocol for seaweed chlorophylls extraction and possible applications in dye sensitized solar cells. J. Phys. D Appl. Phys. 49, 295601 (2016)

    Article  Google Scholar 

  27. N. Sumanta, C.I. Haque, J. Nashika, R. Suprakash, Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 4, 63 (2014)

    Google Scholar 

  28. S.Y. Lumbessy, S.Y. Lumbessy and M Junaidi, M. Junaidi and N. Diniarti, N. Diniarti and D .N. Setyowati, D. N. Setyowati and A. Mukhlis, A. Mukhlis and Tambaru, Rahmadi Identification of chlorophyll pigment on Gracilaria Salicornia seaweed. IOP Conf. Series: Earth and Environmental Science. pp. 1–5 (2021)

  29. C. Osório, S. Machado, J. Peixoto, S. Bessada, F.B. Pimentel, C. Alves Oliveira, Pigments content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of different commercial dried algae. Separations. 7(2), 33 (2020). https://doi.org/10.3390/separations7020033

    Article  Google Scholar 

  30. S. Dere, T. Gunes, R. Sivaci, Spectrophotometric determination of chlorophyll - A, B and total carotenoid contents of some algae species using different solvents. Tr. J. Botany 22, 13 (1998)

    Google Scholar 

  31. F. Zhang, J. He, L. Xia, M. Cai, L. Lin, Y. Guang, Applying and comparing two chemometric methods in absorption spectral analysis of photopigments from Arctic microalgae. J. Microbiol. Methods. 83, 120 (2010)

    Article  Google Scholar 

  32. S.G. Ackleson, Light in shallow waters: a brief research review. Limnol. Oceanogr. 48, 323 (2003)

    Article  ADS  Google Scholar 

  33. S.W. Jeffrey, An improved thin layer chromatographic technique for marine phytoplankton pigments. Limnol. Oceanogr. 26, 191–197 (1981)

    Article  ADS  Google Scholar 

  34. S.W. Jeffrey, Profiles of photosynthetic pigments in the ocean using thin-layer chromatography. Mar. Biol. 26, 101–110 (1974). https://doi.org/10.1007/BF00388879

    Article  Google Scholar 

  35. J. Barichello, S.A. Minicante, G.D. Marco, G. Calogero, E. Trave, F. Gonella, Chlorophyll-c from marine algae and its characterization as natural dye for dye-sensitized solar Cells, In Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV16, International Conference on Hybrid and Organic Photovoltaics, Swansea, United Kingdom, 2016)

  36. G. Worku, D. Shitaw, Extraction of dye from bark of Syzygium guineense for titanium dioxide based dye sensitized solar cell as photo sensitizer. Afr. J. Chem. Edu. 10, 107–123 (2020)

    Google Scholar 

  37. G. Kumara, Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy Mater. Sol. Cells 90, 1220–1226 (2006)

    Article  Google Scholar 

  38. H.S. El-Ghamri, T.M. El-Agez, S.A. Taya, M.S. Abdel-Latif, A.Y. Batniji, Dye-sensitized solar cells with natural dyesextracted from plant seeds. Mater. Sci.-Pol. 32, 547–554 (2014)

    Article  ADS  Google Scholar 

  39. A. Gunasekaran, H.Y. Chen, V.K. Ponnusamy, A. Sorrentino, S. Anandan, Synthesis of high polydispersity index polylactic acid and its application as gel electrolyte towards fabrication of dye-sensitized solar cells. J Polym Res. 28, 252 (2021)

    Article  Google Scholar 

  40. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under opencircuit conditions. Electrochim. Acta 47, 4213 (2002)

    Article  Google Scholar 

  41. N. Pugazhenthiran, R.V. Mangalaraja, S. Vijaya, S. Suresh, M. Kandasamy, P. Sathishkumar, H. Valdes, M.A. Gracia-Pinilla, S. Murugesan, S. Anandan, Fluorine-free synthesis of reduced graphene oxide modified anatase TiO2 nanoflowers photoanode with highly exposed 001 facets for high performance dye-sensitized solar cell. Sol. Energy. 211, 1017 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Scientific and Engineering Research Board (SERB), New Delhi, Government of India, for financial support under Teachers Associateship for Research Excellence (TARE) scheme Reference no. TAR/2018/000866.

Author information

Authors and Affiliations

Authors

Contributions

M. Anand and S. Anandan took part in conceptualization, M. Anand, G. Ahalya, S. Padmapriya involved in methodology, M. Anand, S. Suresh, S. Padmapriya took part in formal analysis and investigation, M. Anand, S. Suresh, S. Anandan involved in writing—original draft preparation; K. Rangesh involved in writing—review and editing; M. Anand and S. Anandan involved in funding acquisition; M. Anand and S. Anandan involved in supervision.

Corresponding author

Correspondence to M. Anand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, M., Suresh, S., Anandan, S. et al. Photovoltaic performance of Gracilaria corticata seaweed extract as sensitizer in dye-sensitized solar cell. J Opt 52, 128–137 (2023). https://doi.org/10.1007/s12596-022-00921-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00921-0

Keywords

Navigation