Skip to main content
Log in

Adaptive liquid lens based on electrowetting of two immiscible liquids: a study with numerical simulation and analysis

  • Short Note
  • Published:
Journal of Optics Aims and scope Submit manuscript

A Correction to this article was published on 03 October 2022

This article has been updated

Abstract

The present work describes a model simulation study of electrowetting on a dielectric surface (EWOD)-based liquid lens using three distinct insulating liquids, namely, silicone oil, n-hexadecane, and n-tetradecane. The model essentially consists of a cylindrical chamber with a typical inner diameter of 3.0 mm and a height of 1.0 mm coated with two different hydrophobic dielectric surfaces, parylene-C and teflon- AF. With a 21.4 mM KCl solution employed as a conducting liquid, the interfacial layer between the two immiscible liquids was found to be modulated precisely for a critical biasing voltage, V > 90 V, switching the curvature profile from diverging to converging type. Moreover, the effects of applied voltage and dielectric layer thickness on this changeover and focal lengths were discussed for a given set of aforesaid pairs of immiscible liquids. Our simulated results and model analyses provide useful insights on the means of experimental strategies, scope, and limitations towards realization of industrial-grade designs and assets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

References

  1. F. Mugele, J.C. Baret, Electrowetting: from basics to applications. J. Phys.: Condens. Matter 17 (28), R705 (2005)

    Google Scholar 

  2. T. Krupenkin, S. Yang, P. Mach, Tunable liquid microlens. Appl. Phys. Lett. 82(3), 316 (2003)

    Article  ADS  Google Scholar 

  3. S. Kuiper, B.H.W. Hendriks, Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85 (7), 1128–1130 (2004)

    Article  ADS  Google Scholar 

  4. R.B. Fair, Digital microfluidics: Is a true lab-on-a-chip possible? Microfluid. Nanofluid 3 (3), 245–281 (2007)

    Article  Google Scholar 

  5. R.A. Hayes, B.J. Feenstra, Video-speed electronic paper based on electrowetting. Nature 425(6956), 383–385 (2003)

    Article  ADS  Google Scholar 

  6. J. Lee, Y. Park, S. H. Oh, S. K. Chung, Multifunctional liquid lens (MLL) for variable focus and variable aperture. IEEE MEMS, 781−784 (2017)

  7. D.Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y.H. Lo, Fluidic adaptive lens with high focal length tunability. Appl. Phys. Lett. 82 (19), 3171-3172 (2003)

    Article  ADS  Google Scholar 

  8. A.Y. Malyuk, N.A. Ivanova, Varifocal liquid lens actuated by laser- induced thermal Marangoni forces. Appl. Phys. Lett. 112 (10), 103701 (2018)

    Article  ADS  Google Scholar 

  9. H.W. Ren, H.Q. Xianyu, S. Xu, S.T. Wu, Adaptive dielectric liquid lens. Opt. Express 16 (19), 14954–14960 (2008)

    Article  ADS  Google Scholar 

  10. B. Berge, J. Peseux, Variable focal lens controlled by an external voltage: an application of electrowetting. The Eur. Phys. J. E 3 (2), 159–163 (2000)

    Article  Google Scholar 

  11. O.D. Supekar, M. Zohrabi, J.T. Gopinath, V.M. Bright, Enhanced response time of electrowetting lenses with shaped input voltage functions. Langmuir 33(19), 4863–4869 (2017)

    Article  Google Scholar 

  12. S. Petsch, S. Schuhladen, L. Dreesen, H. Zappe, The engineered eyeball, a tunable imaging system using soft-matter micro-optics. Light: Sci. Appl. 5 (7), e16068 (2016)

    Article  ADS  Google Scholar 

  13. L. Li, C. Liu, H.R. Peng, Q.H. Wang, Optical switch based on electrowetting liquid lens. J. Appl. Phys. 111 (10), 103103 (2012)

    Article  ADS  Google Scholar 

  14. C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K.Y. Li, Z. Wang, “Electrowetting on liquid-infused film (EWOLF): complete reversibility and controlled droplet oscillation suppression for fast optical imaging. Sci. Rep. 4 (1), 1-7 (2014)

    Article  Google Scholar 

  15. X. Xie, F. Tian, X. Hu, T. Chen, X. Xu, Dynamic sessile micro-droplet evaporation monitored by electric impedance sensing. RSC Adv. 8(25), 13772–13779 (2018)

    Article  ADS  Google Scholar 

  16. B.H.W. Hendriks, S. Kuiper, M.A.J. VAN As, C.A. Renders, T.W. Tukker, Electrowetting-based variable-focus lens for miniature systems. Opt. Rev. 12(3), 255–259 (2005)

    Article  Google Scholar 

  17. W. Ren, E. Weinan, Boundary conditions for the moving contact line problem. Phys. Fluids 19 (2), 022101 (2007)

    Article  ADS  MATH  Google Scholar 

  18. W. Ren, D. Hu, Continuum models for the contact line problem. Phys. Fluids 22 (10), 102103 (2010)

    Article  ADS  MATH  Google Scholar 

  19. G. Lippmann, Relations entre les phenome ́ nes e ̀ lectriques et ́ capillaires. Ann. Chim. Phys. 5 (11), 494 (1875)

    Google Scholar 

  20. R. Scardovell, S. Zalesk, Direct numerical simulation of free surface and interfacial flow. Ann. Rev. Fluid Mech 31(1), 567–603 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Blesgen, A generalization of the Navier-Stokes equations to two-phase flows. J. Phys. D: Appl. Phys. 32 (10), 1119 (1999)

    Article  ADS  Google Scholar 

  22. N.D. Katopodes, Free-surface flow: shallow-water dynamics (Butterworth-Heinemann publications, Elsevier, 2019)

    Google Scholar 

  23. COMSOL Multiphysics Reference Manual 1998–2018

  24. J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modelling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. L.Y. Li, R.Y. Yuan, J.H. Wang, L. Li, Q.H. Wang, Optofluidic lens based on electrowetting liquid piston. Scientific Reports 9(1), 1–7 (2019)

    ADS  Google Scholar 

  26. X. Bi, B.P. Crum, W. Li, Super hydrophobic Parylene-C produced by consecutive O2 and SF6 plasma treatment. J. Microelectromech. Syst. 23(3), 628–635 (2014)

    Article  Google Scholar 

  27. N.K. Neelakantan, P.B. Weisensee, J.W. Overcash, E.J. Torrealba, W.P. King, K.S. Suslick, Spray-on omniphobic ZnO coatings. RSC Adv. 5 (85), 69243–69250 (2015)

    Article  ADS  Google Scholar 

  28. L. Gao, T.J. McCarthy, Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24(17), 9183–9188 (2008)

    Article  Google Scholar 

  29. H. Zhang, Viscosity and density of water + sodium chloride + potassium chloride solutions at 298.15 K. J. Chem. Eng. Data 41(3), 516–520 (1996)

    Article  Google Scholar 

  30. T. Svitova, O. Theodoly, S. Christiano, R.M. Hill, C.J. Radke, Wetting behavior of silicone oils on solid substrates immersed in aqueous electrolyte solutions. Langmuir 18(18), 6821–6829 (2002)

    Article  Google Scholar 

  31. O. Ozkan, H.Y. Erbil, Interpreting contact angle results under air, water and oil for the same surfaces. Surf. Topogr. Metrol. Prop. 5 (2), 024002 (2017)

    Article  ADS  Google Scholar 

  32. E.F. Cooper, A.F.A. Asfour, Densities and kinematic viscosities of some C6–C16 n-alkane binary liquid systems at 293.15 K. J. Chem. Eng. Data 36(3), 285–288 (1991)

    Article  Google Scholar 

  33. A.H. Demond, A.S. Lindner, Estimation of interfacial tension between organic liquids and water. Environ. Sci. Technol. 27(12), 2318–2331 (1993)

    Article  ADS  Google Scholar 

  34. R. Peng, D. Wang, Z. Hu, J. Chen, S. Zhuang, Focal length hysteresis of a double-liquid lens based on electrowetting. J. Opt. 15 (2), 025707 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank our peers and colleagues for their valuable suggestions and timely help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mohanta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7711 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, M.C., Mohanta, D. Adaptive liquid lens based on electrowetting of two immiscible liquids: a study with numerical simulation and analysis. J Opt 52, 877–884 (2023). https://doi.org/10.1007/s12596-022-00920-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00920-1

Keywords

Navigation