Skip to main content
Log in

Analysis of temperature range for self-focusing of lowest-order Bessel–Gaussian laser beams in plasma

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this work, temperature range for self-focusing of lowest-order Bessel–Gaussian laser beams in plasma having relativistic–ponderomotive regime of interaction has been investigated. The nonlinear differential equation for beam-width parameter is obtained by using Wentzel–Kramers–Brillouin (WKB) and paraxial approximations through parabolic equation approach and solved it numerically. In case of Gaussian beam, it is pointed out that there is a temperature range in which self-focusing can occur, while the beam defocuses outside this region. The significant contribution of transverse component of wave parameter of the beam on temperature range of self-focusing has been especially examined. The temperature range for self-focusing of Gaussian beam in the considered regime of interaction with plasma is also deduced as a particular case in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 93, 609 (1968)

    Article  ADS  Google Scholar 

  2. S.D. Patil, M.V. Takale, S.T. Navare, V.J. Fulari, M.B. Dongare, Analytical study of HChG laser beam propagation in collisional and collisionless plasmas. J. Opt. 36, 136 (2007)

    Article  Google Scholar 

  3. P.K. Kaw, Nonlinear laser–plasma interactions. Rev. Mod. Plasma Phys. 1, 2 (2017)

    Article  ADS  Google Scholar 

  4. A. Sharma, I. Kourakis, Relativistic laser pulse compression in plasmas with a linear axial density gradient. Plasma Phys. Control. Fusion 52, 065002 (2010)

    Article  ADS  Google Scholar 

  5. A. Sharma, G. Prakash, M.P. Verma, M.S. Sodha, Three regimes of intense laser beam propagation in plasmas. Phys. Plasmas 10, 4079 (2003)

    Article  ADS  Google Scholar 

  6. A. Sharma, I. Kourakis, M.S. Sodha, Propagation regimes for an electromagnetic beam in magnetized plasma. Plasma Phys. 15, 103103 (2008)

    Article  Google Scholar 

  7. S.D. Patil, M.V. Takale, V.J. Fulari, D.N. Gupta, H. Suk, Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Appl. Phys. B 111, 1 (2013)

    Article  ADS  Google Scholar 

  8. S.D. Patil, M.V. Takale, Self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive regime using upward ramp of plasma density. Phys. Plasmas 20, 083101 (2013)

    Article  ADS  Google Scholar 

  9. S.D. Patil, M.V. Takale, Weakly relativistic ponderomotive effects on self-focusing in the interaction of cosh-Gaussian laser beams with a plasma. Laser Phys. Lett. 10, 115402 (2013)

    Article  ADS  Google Scholar 

  10. M. Aggarwal, S. Vij, N. Kant, Propagation of cosh Gaussian laser beam in plasma with density ripple in relativistic-ponderomotive regime. Optik 125, 5081 (2014)

    Article  ADS  Google Scholar 

  11. H. Kumar, M. Aggarwal, D. Sharma, S. Chandok, T.S. Gill, Significant enhancement in the propagation of cosh-Gaussian laser beam in a relativistic-ponderomotive plasma using ramp density profile. Laser Part. Beams 36, 179 (2018)

    Article  ADS  Google Scholar 

  12. B. Bokaei, A.R. Niknam, M.R. Jafari Milani, Turning point temperature and competition between relativistic and ponderomotive effects in self-focusing of laser beam in plasma. Phys. Plasmas 20, 103107 (2013)

    Article  ADS  Google Scholar 

  13. M.R. Jafari Milani, A.R. Niknam, B. Bokaei, Temperature effect on self-focusing and defocusing of Gaussian laser beam propagation through plasma in weakly relativistic regime. IEEE Trans. Plasma Sci. 42, 742 (2014)

    Article  ADS  Google Scholar 

  14. B. Bokaei, A.R. Niknam, Increasing the upper-limit intensity and temperature range for thermal self-focusing of a laser beam by using plasma density ramp-up. Phys. Plasmas 21, 032309 (2014)

    Article  ADS  Google Scholar 

  15. S.D. Patil, M.V. Takale, V.J. Fulari, T.S. Gill, Sensitiveness of light absorption for self-focusing at laser-plasma interaction with weakly relativistic and ponderomotive regime. Laser Part. Beams 34, 669 (2016)

    Article  ADS  Google Scholar 

  16. S.D. Patil, M.V. Takale, Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: effect of light absorption. AIP Conf. Proc. 1728, 020129 (2016)

    Article  Google Scholar 

  17. S.D. Patil, P.P. Chikode, M.V. Takale, Turning point temperature of self-focusing at laser-plasma interaction with weak relativistic-ponderomotive nonlinearity: effect of light absorption. J. Opt. 47, 174 (2018)

    Article  Google Scholar 

  18. P. Rawat, R.K. Singh, R.P. Sharma, G. Purohit, Effects of relativistic and ponderomotive nonlinearties on the beat wave generation of electron plasma wave and particle Acceleration in non-paraxial region. Euro. Phys. J. D 68, 57 (2014)

    Article  ADS  Google Scholar 

  19. S. Vij, T.S. Gill, M. Aggarwal, Effect of the transverse magnetic field on spatiotemporal dynamics of quadruple Gaussian laser beam in plasma in weakly relativistic and ponderomotive regime. Phys. Plasmas 23, 123111 (2016)

    Article  ADS  Google Scholar 

  20. H. Kumar, M. Aggarwal, T.S. Gill, Combined effect of relativistic and ponderomotive nonlinearity on self-focusing of Gaussian laser beam in a cold Quantum plasma. Laser Part. Beams 34, 426 (2016)

    Article  ADS  Google Scholar 

  21. M. Aggarwal, H. Kumar, R. Mahajan, N.S. Arora, T.S. Gill, Relativistic ponderomotive self-focusing of quadruple Gaussian laser beam in cold quantum plasma. Laser Part. Beams 36, 353 (2018)

    Article  ADS  Google Scholar 

  22. V. Sharma, V. Thakur, N. Kant, Effect of linear absorption on self focusing of Hermite Gaussian laser beam in plasma in relativistic and ponderomotive regime. Optik 194, 163076 (2019)

    Article  ADS  Google Scholar 

  23. K. Walia, D. Tripathi, Y. Tyagi, Investigation of weakly relativistic ponderomotive effects on self-focusing during interaction of high power elliptical laser beam with plasma. Commun. Theor. Phys. 68, 245 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Kumar, M. Aggarwal, Self-focusing of an elliptic-Gaussian laser beam in relativistic ponderomotive plasma using a ramp density profile. J. Opt. Soc. Am. B 35, 1635 (2018)

    Article  ADS  Google Scholar 

  25. N. Kant, A. Singh, V. Thakur, Second-harmonic generation by a chirped laser pulse with the exponential density ramp profile in the presence of a planar magnetostatic wiggler. Laser Part. Beams 37, 442 (2019)

    Article  ADS  Google Scholar 

  26. N. Kant, S. Vij, S.K. Chakravarti, J.P. Kushwaha, V. Thakur, Relativistic self-focusing of Hermite-cosh-Gaussian laser beam in magnetoplasma with exponential plasma density ramp. Commun. Theor. Phys. 71, 1469 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. V. Sharma, V. Thakur, N. Kant, Third harmonic generation of a relativistic self-focusing laser in plasma in the presence of wiggler magnetic field. High Energy Density Phys. 32, 51 (2019)

    Article  ADS  Google Scholar 

  28. B.D. Vhanmore, S.D. Patil, A.T. Valkunde, T.U. Urunkar, K.M. Gavade, M.V. Takale, Self-focusing of asymmetric cosh-Gaussian laser beams propagating through collisionless magnetized plasma. Laser Part. Beams 35, 670 (2017)

    Article  ADS  Google Scholar 

  29. B.D. Vhanmore, A.T. Valkunde, T.U. Urunkar, K.M. Gavade, S.D. Patil, M.V. Takale, Self-focusing of higher-order asymmetric elegant Hermite-cosh-Gaussian laser beams in collisionless magnetized plasma. Eur. Phys. J. D 73, 45 (2019)

    Article  ADS  Google Scholar 

  30. B.D. Vhanmore, M.V. Takale, S.D. Patil, Influence of light absorption in the interaction of asymmetric elegant Hermite-cosh-Gaussian laser beams with collisionless magnetized plasma. Phys. Plasmas 27, 063104 (2020)

    Article  Google Scholar 

  31. K.M. Gavade, T.U. Urunkar, B.D. Vhanmore, A.T. Valkunde, M.V. Takale, S.D. Patil, Self-focusing of Hermite-cosh-Gaussian laser beams in a plasma under a weakly relativistic and ponderomotive regime. J. Appl. Spectr. 87, 499 (2020)

    Article  ADS  Google Scholar 

  32. V. Thakur, N. Kant, S. Vij, Effect of cross-focusing of two laser beams on THz radiation in graphite nanoparticles with density ripple. Phys. Scr. 95, 045602 (2020)

    Article  ADS  Google Scholar 

  33. B. Hafizi, E. Esarey, P. Sprangle, Laser-driven acceleration with Bessel beams. Phys. Rev. E 55, 3539 (1997)

    Article  ADS  Google Scholar 

  34. L.V. Dao, K.B. Dinh, P. Hannaford, Generation of extreme ultraviolet radiation with a Bessel-Gaussian beam. Appl. Phys. Lett. 95, 131114 (2009)

    Article  ADS  Google Scholar 

  35. J. Cang, Y. Zhang, Axial intensity distribution of truncated Bessel-Gauss beams in a turbulent atmosphere. Optik 121, 239 (2010)

    Article  ADS  Google Scholar 

  36. M. Duocastella, C.B. Arnold, Bessel and annular beams for materials processing. Laser Photon. Rev. 6, 607 (2012)

    Article  ADS  Google Scholar 

  37. L. Ouahid, L. Dalil-Essakali, A. Belafhal, Impact of light absorption and temperature on self-focusing of zeroth-order Bessel-Gauss beams in a plasma with relativistic-ponderomotive regime. Opt. Quant. Electron. 50, 398 (2018)

    Article  Google Scholar 

  38. Y.P. Arul Teen, T. Nathiyaa, K.B. Rajesh, S. Karthick, Bessel Gaussian beam propagation through turbulence in free space optical communication. Opt. Mem. Neural Netw. 27, 81 (2018)

    Article  Google Scholar 

  39. T. Yu, H. Xia, W. Xie, G. Xiao, H. Li, The generation and verification of Bessel-Gaussian beam based on coherent beam combining. Results Phys. 16, 102872 (2020)

    Article  Google Scholar 

  40. M.S. Sodha, A.K. Ghatak, V.K. Tripathi, Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.D., Vhanmore, B.D. & Takale, M.V. Analysis of temperature range for self-focusing of lowest-order Bessel–Gaussian laser beams in plasma. J Opt 49, 510–515 (2020). https://doi.org/10.1007/s12596-020-00655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00655-x

Keywords

Navigation