Skip to main content
Log in

Phase-shifting digital holographic data compression

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Modern holography for 3D imaging allows to reconstruct all the parallaxes that are needed for a truly immersive visualization. Nevertheless, it possesses huge amount of data which induces higher transmission and storage requirements. To gain more popularity and acceptance, digital holography demands development of efficient coding schemes that provide significant data compression at low computation cost. Another issue that needs to be tackled when designing holography coding algorithms is interoperability with commonly used formats. In light of this, the upcoming JPEG Pleno standard aims to develop a standard framework for the representation and exchange of new imaging modalities such as holographic imaging while maintaining backward compatibility with the legacy JPEG decoders. This paper summarizes the early work on lossy compression of computer graphic holograms and analyses the efficiency of additional methods that may exhibit good satisfactory coding performance while considering the backward compatibility with legacy JPEG decoders. To validate our findings, the results of our tests are shown and interpreted. Finally, we also outline the emerging trends for future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Okoshi, Three-Dimensional Imaging Techniques (Academic Press, New York, 1976)

    Google Scholar 

  2. D. Gabor, A new microscopic principle. J. Nat. 161, 777 (1948)

    Article  ADS  Google Scholar 

  3. F. Yaras, H. Kang, L. Onural, State of the art in holographic displays: a survey. IEEE J. Disp. Technol. 6, 443–454 (2010)

    Article  ADS  Google Scholar 

  4. G.P. Tricoles, Computer generated holograms: an historical review. Appl. Opt. 26, 4351–4360 (1987)

    Article  ADS  Google Scholar 

  5. A. Symeonidou, D. Blinder, A. Munteanu, P. Schelkens, Computer-generated holograms by multiple wavefront recording plane method with occlusion culling. Opt. Express 23, 22149–22161 (2015)

    Article  ADS  Google Scholar 

  6. E. Darakis, T. Naughton, J. Soragha, B. Javidi, Measurement of compression defects in phase-shifting digital holographic data, in Proceedings of SPIE, Optical Information Systems IV, San Diego, California, vol. 6311 (2013)

  7. Y. Xing, B. Pesquet-Popescu, F. Dufaux, Comparative study of scalar and vector quantization on different phase-shifting digital holographic data representations, in 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video, Budapest, Hungry (2014)

  8. Y. Xing, M. Kaaniche, B. Pesquet-Popescu, F. Dufaux, Digital Holographic Data Representation and Compression (Academic Press, London, 2015)

    Google Scholar 

  9. E.A. Kurbatova, P.A. Cheremkhin, N.N. Evtikhiev, V.V. Krasnov, S.N. Starikov, Methods of compression of digital holograms. Phys. Proc. 73, 328–332 (2010)

    Article  ADS  Google Scholar 

  10. F. Dufaux, Y. Xing, B. Pesquet-Popescu, P. Schelkens, Compression of digital holographic data: an overview, in SPIE Proceedings of the Applications of Digital Image Processing XXXVIII, San Diego, CA (2015)

  11. D. Blinder, A. Ahar, A. Symeonidou, Y. Xing, T. Bruylants, C. Schreites, B. Pesquet-Popescu, F. Dufaux, A. Munteanu, P. Schelkens, Open access database for experimental validations of holographic compression engines, in Proceedings of the 7th International Workshop on Quality of Multimedia Experience (QoMEX’2015), Messinia, Greece (2015)

  12. J. Peixeiro, C. Brites, J. Ascenso, F. Pereira, Digital holography: benchmarking coding standards and representation formats, in IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA (2016)

  13. M. Bernardo, P. Fernandes, A. Arrifano, M. Antonini, E. Fonseca, P. Fiadeiro, A. Pinheiro, M. Pereira, Holographic representation: hologram plane vs. object plane. Signal Process. Image Commun. 68, 193–206 (2018)

    Article  Google Scholar 

  14. JPEG Pleno Abstract and Executive Summary, ISO/IEC JTC 1/SC 29/WG1 N6922 Australia, Sydney (2015)

  15. U. Schnars, W. Juptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, 85–101 (2002)

    Article  ADS  Google Scholar 

  16. U. Schnars, W. Juptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, 85–101 (2002)

    Article  ADS  Google Scholar 

  17. J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (MaGraw-Hill, New York, 1996)

    Google Scholar 

  18. J.W. Goodman, Introduction to Fourier Optics, 3rd edn. (Roberts and Company Publishers, Atlanta, 1979)

    Google Scholar 

  19. I. Yamaguchi, T. Zhang, Phase shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  20. Y. Xing, M. Kaaniche, B. Pesquet-Popescu, F. Dufaux, Vector lifting scheme for phase-shifting holographic data compression. Opt. Eng. 53, 98–109 (2014)

    Article  Google Scholar 

  21. E. Darakis, J. Soraghan, Compression of interference patterns with application to phase-shifting digital holography. Appl. Opt. 45, 2437–2443 (2006)

    Article  ADS  Google Scholar 

  22. E. Darakis, J. Soraghan, Compression of phase-shifting digital holography interference patterns, applied optics, in Photon Management II, Proceedings of the SPIE, vol. 6187, ed. by J.T. Sheridan, F. Wyrowski (2006)

  23. G.A. Mills, I. Yamaguchi, Effects of quantization in phase-shifting digital holography. Appl. Opt. 44, 1216–1225 (2005)

    Article  ADS  Google Scholar 

  24. T.J. Naughton, J.B. McDonald, B. Javidi, Efficient compression of Fresnel fields for internet transmission of three-dimensional images. Appl. Opt. 42, 4758–4764 (2003)

    Article  ADS  Google Scholar 

  25. T.J. Naughton, Y. Frauel, B. Javidi, E. Tajahuerce, Compression of digital holograms for three-dimensional object reconstruction and recognition. Opt. Express 41, 4124–4132 (2002)

    Google Scholar 

  26. A.E. Shortt, T.J. Naughton, B. Javidi, A companding approach for nonuniform quantization of digital holograms of three-dimensional objects. Opt. Express 14, 5129–5134 (2006)

    Article  ADS  Google Scholar 

  27. A. Arrifano, M. Antonini, M. Pereira, Multiple description coding of digital holograms using Maximum-a-Posteriori, in IEEE 4th European Workshop on Visual Information Processing (EUVIP), France, Paris (2013)

  28. Y. Xing, M. Kaaniche, B. Pesquet-Popescu, F. Dufaux, Adaptive non separable vector lifting scheme for digital holographic data compression. Appl. Opt. 54, 98–109 (2015)

    Article  ADS  Google Scholar 

  29. E. Darakis, J. Soraghan, Use of Fresnelets for phase-shifting digital hologram compression. IEEE Trans. Image Process. 2006(15), 3804–3811 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Viswanathan, P. Gioia, L. Morin, Morlet wavelet transformed holograms for numerical adaptive view-based reconstruction, in Proceedings of SPIE, Optics and Photonics for Information Processing VIII, San Diego, California, vol. 9216 (2014)

  31. K. Viswanathan, P. Gioia, L. Morin, Wavelet compression of digital holograms: towards a view-dependent framework, in Proceedings of SPIE, Applications of Digital Image Processing XXXVI, San Diego, California, vol. 8856 (2013)

  32. I. Daubechies, S. Jaffard, J.L. Journes, A simple wilson orthonormal basis with exponential decay. SIAM J. Math. 22, 554–573 (1991)

    Article  MathSciNet  Google Scholar 

  33. A. El Rhammad, P. Gioia, G. Antonini, M. Cagnazzo, B. Pesquet, Color digital hologram compression based on matching pursuit. Appl. Opt. 57(19), 1–13 (2018)

    Google Scholar 

  34. G.K. Wallace, The JPEG still picture compression standard. Commun. ACM 34, 30–44 (1991)

    Article  Google Scholar 

  35. A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 18, 38–58 (2001)

    Article  ADS  Google Scholar 

  36. G.J. Sullivan, G. Bjontegaard, A. Luthra, Overview of the H.264 AVC video coding. IEEE Trans. Circuits Syst. Video Technol. 13, 560–576 (2003)

    Article  Google Scholar 

  37. G.J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the high efficiency video coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1649–1668 (2012)

    Article  Google Scholar 

  38. E. Darakis, J. Soraghan, Reconstruction domain compression of phase-shifting digital holograms. Appl. Opt. 46(3), 351–356 (2007)

    Article  ADS  Google Scholar 

  39. J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  40. V. Ratnakar, M. Livny, RD-OPT: an efficient algorithm for optimizing DCT quantization tables, in IEEE Processings of the Data Compression Conference (DCC), Snowbird, UT (1995), pp. 332–341

  41. R.L. Graham, An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1, 132–133 (1972)

    Article  Google Scholar 

  42. A. Munteanu, J. Cornelis, G.V. Der Auwera, P. Cristea, Wavelet image compression—the quadtree coding approach. IEEE Trans. Inf. Technol. Biomed. 3, 176–185 (1999)

    Article  Google Scholar 

  43. A. Said, W. Pearlman, A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996)

    Article  Google Scholar 

  44. N. Chamakhi, I. Bouzidi, Zaid A. Ouled, F. Dufeaux, JPEG based compression of digital holograms, in IEEE European Workshop on Visual Information Processing, Tampere, Finland (2018)

Download references

Acknowledgements

The authors are particularly grateful to David Blinder and Peter Schelkens (ETRO-VUB, Brussels, Belgium), Manuella Pereira (University of Beira Interior, Covilha, Portugal), José Peixeiro (Técnico Lisboa, Portugal), and Patrick Gioia (Orange Labs, Rennes, France) for their support, the very interesting discussions and for giving us access to their holographic display.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azza Ouled Zaid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachani, M., Ouled Zaid, A. & Dufaux, F. Phase-shifting digital holographic data compression. J Opt 48, 412–428 (2019). https://doi.org/10.1007/s12596-019-00538-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-019-00538-w

Keywords

Navigation