Skip to main content
Log in

Competition between Lorentzian Gaussian width in pure oxygen absorption spectrum at 1264 nm band

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Voigt deconvolution method was applied to analyze experimental pure oxygen absorption spectrum at 1270 nm band. This method gives two bands, the first is a weak discrete absorption band at 1268 nm and vanishes under high pressures, whereas the second is a continuous absorption band at 1264 nm and prevails under high pressures. Applicable pressures were varied between 10 and 25 bar, and temperatures at 298, 323, 348, and 373 K. Competition between pressure broadening and Doppler broadening was very sensitive. Gaussian width, Lorentzian width, and Voigt full width at half-maximum height (Voigt FWHM) were calculated for each spectral line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.H. Krupenie, The spectrum of molecular oxygen. J. Phys. Chem. Ref. Data 1, 423 (1972). doi:10.1063/1.3253101

    Article  ADS  Google Scholar 

  2. D.L. Grimminck, F.R. Spiering, L.M. Janssen, A. van der Avoird, W.J. van der Zande, G.C. Groenenboom, A theoretical and experimental study of pressure broadening of the oxygen A-band by helium. J. Chem. Phys. 140, 204314 (2014). doi:10.1063/1.4878666

    Article  ADS  Google Scholar 

  3. A. Meckler, Electronic energy levels of molecular oxygen. J. Chem. Phys. 21, 1750 (1953). doi:10.1063/1.1698657

    Article  ADS  Google Scholar 

  4. H. Margenau, Pressure shift and broadening of spectral lines. Phys. Rev. 40, 387 (1932). doi:10.1103/PhysRev.40.387

    Article  ADS  MATH  Google Scholar 

  5. G. Peach, Theory of the pressure broadening and shift of spectral lines. Adv. Phys. 30, 367 (1981). doi:10.1080/00018738100101467

    Article  ADS  Google Scholar 

  6. R.G. Gordon, Theory of the width and shift of molecular spectral lines in gases. J. Chem. Phys. 44, 3083 (1966). doi:10.1063/1.1727183

    Article  ADS  Google Scholar 

  7. M. Smith, D.A. Newnham, Near-infrared absorption spectroscopy of oxygen and nitrogen gas mixtures. Chem. Phys. Lett., 308,1(1999). www.elsevier.nlrlocatercplett

  8. J.C.S. Chagas, D.A. Newnham, K.M. Smith, K.P. Shine, Impact of new measurements of oxygen collision-induced absorption on estimates of short-wave atmospheric absorption. Q. J. R. Meteorol. Soc. 128, 2377 (2002). doi:10.1256/qj.01.159

    Article  ADS  Google Scholar 

  9. R.M. Badger, A.C. Wright, R.F. Whitlock, Absolute intensities of the discrete and continuous absorption bands of oxygen gas at 1.26 and 1.065 μ and the radiative lifetime of the 1δ g state of oxygen. J. Chem. Phys. 43, 4345 (1965). doi:10.1063/1.1696694

    Article  ADS  Google Scholar 

  10. R.R. Gamache, A.A. Goldman, L.S. Rothmanii, Improved spectral parameters for the three most abundant isotopomers of the oxygen molecule. J. Quant. Spectrosc. Radiat. Transfer 59, 495 (1998). doi:10.1016/S0022-4073(97)00124-6

    Article  ADS  Google Scholar 

  11. F.J. Murcray, A. Goldman, J.C. Landry, T.M. Stephen, O2 continuum: a possible explanation for the discrepancies between measured and modeled shortwave surface irradiances. Geophys. Res. Lett. 24, 2315 (1997). doi:10.1029/97GL02220/pdf

    Article  ADS  Google Scholar 

  12. B. Mate, C. Lug, G.T. Frase, W.J. Lafferty, Absolute intensities for the O2 1.27 μm continuum absorption. J. Geophys. Res. 104, 30585–30590 (1999). doi:10.1029/1999JD900824

    Article  ADS  Google Scholar 

  13. A. Jablonski, General theory of pressure broadening of spectral lines. Phys. Rev. 68, 78 (1945). doi:10.1103/PhysRev.68.78

    Article  ADS  Google Scholar 

  14. H. Margenau, The second virial coefficient for gases: a critical comparison between theoretical and experimental results. Phys. Rev. 36, 1782 (1930). doi:10.1103/PhysRev.36.1782

    Article  ADS  Google Scholar 

  15. V.M. Devi, D.C. Benner, M.A.H. Smith, C.P. Rinsland, pressure broadening and pressure shift coefficients in the 2ν 20 and Ν1 bands of 16O13C18O. J. Quant. Spectrosc. Radiat. Transf. 60, 771 (1998). doi:10.1016/S0022-4073(98)00081-8

    Article  ADS  Google Scholar 

  16. F.W. Byron Jr., H.M. Foley, Theory of collision broadening in the sudden approximation. Phys. Rev. 134, A625–A637 (1964). doi:10.1103/PhysRev.134.A625

    Article  ADS  Google Scholar 

  17. A. Bielski, J. Karwowski, J. Wolnikowski, A numerical method for separation of overlapping components of a spectral line. Opt. Commun. 23(3), 362–364 (1977). doi:10.1016/0030-4018(77)90381-9

    Article  ADS  Google Scholar 

  18. T. Giesen, R. Schieder, G. Winnewisser, K.M.T. Yamada, Precise measurements of pressure broadening and shift for several H2O lines in the ν2 band by argon, nitrogen, oxygen, and air. J. Mol. Spectrosc. 153, 406 (1992). doi:10.1016/0022-2852(92)90485-7

    Article  ADS  Google Scholar 

  19. J. Humlíček, Optimized computation of the Voigt and complex probability functions. J. Quant. Spectrosc. Radiat. Transfer 27, 437 (1982). doi:10.1016/0022-4073(82)90078-4

    Article  ADS  Google Scholar 

  20. L. Régalia-Jarlot, X. Thomas, P. Von der Heyden, A. Barbe, Pressure-broadened line widths and pressure-induced line shifts coefficients of the (1-0) and (2-0) bands of 12C16O. J. Quant. Spectrosc. Radiat. Transfer 91, 121 (2005). doi:10.1016/j.jqsrt.2004.05.042

    Article  ADS  Google Scholar 

  21. M. A. AL-Jalali, Y. M. Mahzia, Pressure broadening and narrowing in pure oxygen absorption spectrum at 1270 nm band: part I. J. Chem. Bio. Phy. Sci. Sec. C. 7, 92 (2017). http://jcbsc.org/issuephy.php?volume=7&issue=1

  22. M. A. AL-Jalali, Y. M. Mahzia, Pressure broadening and narrowing in pure oxygen absorption spectrum at 1270 nm band: part II. J. Chem. Bio. Phy. Sci. Sec. C. 7, 110 (2017). http://jcbsc.org/issuephy.php?volume=7&issue=1

  23. M.A. AL-Jalali, I.F. Aljghami, Y.M. Mahzia, Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band. Spectrochim. Acta Part A Mol. Spectrosc. 157, 34 (2016). doi:10.1016/j.saa.2015.12.010

    Article  ADS  Google Scholar 

  24. M. A. A L-Jalali, I. F. Aljghami, Y. M. Mahzia, Absorption spectrum deconvolution of zero air at 1270 nm band. Int. J. ChemTech Res. 8, 116 (2015). http//: sphinxsai.com/2015/ch_vol8_no7/1/(116-127) V8N7CT

  25. M.A. AL-Jalali, Comparison between simple and advanced data analysis to pure oxygen absorption spectrum at the 1270 nm band. J. Appl. Math. Phys. 3, 1114 (2015). doi:10.4236/jamp.2015.39138

    Article  Google Scholar 

  26. M. A. AL-Jalali, I. F. Aljghami, Y. M. Mahzia, Virial expansion and its application to oxygen spectroscopic measurements at 1270 nm band. J. Chem. Soc. Pak. 37, 1226(2015). http://jcsp.org.pk/ViewByVolume.aspx?v=1206&i=VOLUME%2037,%20NO6,%20DEC-2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad A. AL-Jalali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Jalali, M.A., Mahzia, Y.M. Competition between Lorentzian Gaussian width in pure oxygen absorption spectrum at 1264 nm band. J Opt 46, 241–246 (2017). https://doi.org/10.1007/s12596-017-0409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-017-0409-y

Keywords

Navigation