Skip to main content
Log in

Zircon LA-ICP-MS dating and geochemical characteristics of I-type granitoids from the Yanhu area, west segment of the Bangongco-Nujiang suture (western Tibet): Petrogenesis and implications for the southward subduction of the Tethyan Ocean

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

The Yanhu granitoids are located in the west segment of the Bangongco-Nujiang suture in the western Tibetan Plateau. The main rock types of the granitoids are diorite porphyry, quartz diorite, granodiorite, granite and granite porphyry. Here, their zircon LA-ICP-MS U-Pb ages and petrogeochemical data are reported. Three groups of magmatic events can be distinguished from the Yanhu area: group 1 includes samples AK01 and ZK01 of diorite porphyry, and sample D3658 of quartz diorite that yield mean zircon U-Pb ages of 121.0 ± 2.7 Ma, 116.6 ± 2.0 Ma and 116.0 ± 3.9 Ma, respectively; group 2 includes sample D0050 of diorite porphyry, samples D1393 and D3660 of granodiorite and sample D3065 of granite porphyry that yield mean zircon U-Pb ages of 104.9 ± 2.0 Ma, 105.4 ± 3.8 Ma, 104.2 ± 1.9 Ma and 104.2 ± 1.9 Ma, respectively; group 3 includes sample D3093 of granite that yields mean zircon U-Pb ages of 93.6 ± 1.5 Ma. The zircon LA-ICP-MS U-Pb ages suggest that the Yanhu granitoids were emplaced at 121.0–93.6 Ma, representing Cretaceous magmatism in the west segment of the Bangongco-Nujiang suture. The granitoids are composed of SiO2 (56.57 to 76.98 wt.%), Al2O3 (12.20 to 17.90 wt.%), Na2O (3.61 to 4.98 wt.%), K2O (2.06 to 4.71 wt.%) and CaO (0.27 to 5.74 wt.%). The Yanhu granitoids exhibit enrichment in LREE (light REE) and LILE (large ion lithophile elements) such as Rb, Th, U, Pb and K and depletion of HREE (heavy REE), P, Ti, Nb, Ta and Zr. Their A/CNK ratios of 0.85-1.06 are <1.1, implying that they are high-K, metaluminous-weakly peraluminous I-type granites. TheYanhu granitoids were generated mainly by partial melts of the meta-igneous lower crust and some arc-related materials. The Yanhu granitoids probably formed in VAG and syn-COLG tectonic settings related to the southward subduction of the Tethyan Ocean. Diorite porphyry and quartz diorite magmatism from 121.0 Ma to 116.0 Ma may be associated with the southward Bangongco–Nujiang Tethys oceanic crust subduction. Diorite porphyry, granodiorite, and granite porphyry magmatism from 105.4 Ma to 104.2 Ma may be associated with the rising asthenosphere induced by the slab breakoff. Granite magmatism from 93.6 Ma may be related to the crustal thickening induced by the final amalgamation of the Lhasa Terrane and the Qiangtang Terrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altherr, R., Holl, A., Hegner, E., Langer, C., Kreuzer, H. (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, v.50, pp.51–73.

    Article  Google Scholar 

  • Bonin, B. (2007) A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, v.97, pp.1–29.

    Article  Google Scholar 

  • Chappell, B.W., White, A.J.R. (1992). I-and S-type granites in the Lachlan Fold Belt. Geol. Soc. Amer. Spec. Paper, no.272, pp.1–26.

    Article  Google Scholar 

  • Chen, C.H., Lin, W., Lu, H.Y., et al. (2000). Cretaceous fractionated I-type granitoids and metaluminous A-type granites in SE China: the Late Yanshanian post-orogenic magmatism. Geol. Soc. Amer. Spec. Paper no.350, pp.195–205.

    Google Scholar 

  • Collins, W.J., Beams, S.D., White, A.J.R. and Chappell, B.W. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol., v.80, pp.189–200.

    Article  Google Scholar 

  • Condie, K.C., Kröner, A. (2013) The bulding blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Res., v.23, pp.394–402.

    Article  Google Scholar 

  • Fan, J.J., Li, C., Hu, P.Y., et al. (2013) The Characteristics of Zhonggang Ocean Island in Gaiz areaÿTibet: Evidence on the closure of the Nujiang Suture Zone-Bangong. China Guangzhou: University of Zhongshan Press (in Chinese with English Abstract).

    Google Scholar 

  • Geng, Q.R., Sun, Z.M., Pan, G.T., et al. (2009) Origin of the Gangdise (Transhimalaya) Permian arc in southern Tibet: Stratigraphic and volcanic geochemical constraints. Island Arc, v.18(3), pp.467–487.

    Article  Google Scholar 

  • Hoskin, P.W.O., Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem., v.53(1), pp.27–62. DOI: 10.2113/0530027.

    Article  Google Scholar 

  • Hsu, K.J., Pan, G.T., Sengor, A.M.C. (1995) Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the archipelago model of orogenesis. Internat. Geol. Rev., v.37(6), pp.473–508.

    Article  Google Scholar 

  • Jackson, S.E., Pearson, N.J., Griffin, W.L., et al. (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol., v.211, pp.47–69.

    Article  Google Scholar 

  • Kapp, P., Murphy, M.A., Yin, A., et al. (2003a) Mesozoic and Cenozoic gectonic evolution of the Shiquanhe area of western Tibet. Tectonics, v.22(4), pp.1029.

    Google Scholar 

  • Kapp, P., Yin, A., Manning, C.E., et al. (2003b) Tectonic evolution of the Early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics, v.22(4), pp.1043.

    Google Scholar 

  • Li, J.X., Li, G.M., Qin, K.Z., et al. (2008) Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet: constraints on metallogenic tectonic settings. Acta Petrologica Sinica, v.24(3), pp.531–543 (in Chinese with English Abstract).

    Google Scholar 

  • Li, S.M., Zhu, D.C., Wang, Q., et al. (2014) Northward subduction of Bangong-Nujiang Tethys: insight from late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos, v.205, pp.284–297.

    Article  Google Scholar 

  • Li, X.H., Li, Z.X., Li, W.X., Liu, Y., Yuan, C., Wei, G., Qi, C. (2007) U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic Island A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos, v.96(1), pp.186–204.

    Article  Google Scholar 

  • Li, Y.L., He, J., Wang, C.S., et al. (2015) Cretaceous volcanic rocks in south Qiangtang terrane: products of northward subduction of the Bangong-Nujiang Ocean? Jour. Asian Earth Sci., v.104, pp.69–83.

    Article  Google Scholar 

  • Liu, D.L., Shi, R.D., Ding, L., et al. (2015). Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: implications for the subduction of the Bangong-Nujiang Tethyan Ocean. Gondwana Res., http://dx.doi.org/10.1016/j.gr.2015.04.007

    Google Scholar 

  • Liu, Y.S., Hu, Z.C., Gao, S., et al. (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geol., v.257(1-2), pp.34–43.

    Article  Google Scholar 

  • Liu, Y.S., Gao, S., Hu, Z.C. (2010a. Continental and oceanic crust recyclinginduced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Jour. Petrol., v.51 (1-2), pp.537–571.

    Article  Google Scholar 

  • Liu, Y.S., Hu, Z.C., Zong, K.Q. (2010b) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Sci. Bull., v.55(15), pp.1535–1546.

    Article  Google Scholar 

  • Ludwig, K.R. (2003) Using isoplot/EX, Version 3.0, a geochronological toolkit for Microsoft Excel, Berkeley Geochronological Center Spec. Publ., no.4, 74p.

    Google Scholar 

  • Matte, P., Tapponnier, P., Arnaud, N., et al. (1996) Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet. Sci. Lett., v.142(3/4), pp.311–330

    Article  Google Scholar 

  • McCarron, J.J., Smellie, J.L. (1998) Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites: Alexander Island, Antarctica. Jour. Geol. Soc., v.155, pp.269–280

    Article  Google Scholar 

  • Pan, G.T., Mo, X.X., Hou, Z.Q., et al. (2006) Spatial–temporal framework of the Gangdise Orogenic Belt and its evolution. Acta Petrol. Sinica, v.22, pp.521–533 (in Chinese with English abstract).

    Google Scholar 

  • Patiño Douce, A.E. (1995) Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. Jour. Geophys. Res., v.100, pp.15623–15639.

    Article  Google Scholar 

  • Patiño Douce, A.E. (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. London Spec. Publ., v.168, pp.55–75.

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle A G (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Jour. Petrol., v.25, pp.956–983.

    Article  Google Scholar 

  • Qiu RZ, Zhou S, Demg JF, et al. (2004) Dating of gabbro in the Shemalagou ophiolite in the western segment of the Bangongco-Nujiang ophiolite belt, Tibet-With a discuss of the age of the Bangongco-Nujiang ophiolite belt. Geol. China, v.31(3), pp.262–268 (in Chinese with English Abstract).

    Google Scholar 

  • Qu, X.M., Wang, R.J., Xin, H.B., et al. (2009) Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone, the western Tibetan Plateau. Geochimica v.38(6), pp.523–535 (in Chinese with English Abstract).

    Google Scholar 

  • Qu, X.M., Wang, R.J., Xin, H.B., et al. (2012) Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau. Lithos, v.146/147, pp.264–275

    Article  Google Scholar 

  • Rapp, R.P., Watson, E.B. (1995) Dehydration melting of metabasalt at 8–32kbar: implications for continental growth and crust–mantle recycling. Journal of Petrology 36: 891–931

    Article  Google Scholar 

  • Ren, J.S., Xiao, L.W. (2004) Lifting the mysterious veil of the tectonics of the Qinghai-Tibet Plateau by 1:250000 geological mapping. Geol. Bull. China, v.23(1), pp.1–11 (in Chinese with English Abstract).

    Google Scholar 

  • Rickwood, P.C. (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, v.22, pp.247–263

    Article  Google Scholar 

  • Streckeisen, A., Le Maitre, R.W. (1979) A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jb Mineral Abh, v.136, pp.169–206

    Google Scholar 

  • Sui, Q.L., Wang, Q., Zhu, D.C., et al. (2013). Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: implications for the magmatic origin and crustal growth in a continent–continent collision zone. Lithos, v.168–169, pp.144–159

    Article  Google Scholar 

  • Sun, S.S., McDonough, W.F. (1989) Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. (Ed.), Magmatism in Ocean Basins: Geol. Soc. Publ, v.42, pp.313–345.

    Google Scholar 

  • TRGSRG (2003) Tibet 1/250000 regional geological survey report in Geji (I44C004001) Geological Survey in Sichuan Province, Chengdu, (in Chinese).

    Google Scholar 

  • Wang, Q., Zhu, D.C., Zhao, Z.D., et al. (2014) Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos, v. 198199, pp.24–37.

    Article  Google Scholar 

  • Wang, W.L, Aitchison, J.C., Lo CH, et al. (2008) Geochemistry and geochronology of the amphibolites blocks in ophiolite melanges along Bangong-Nujiang suture, central Tibet. Jour. Asian Earth Sci., v.33(1/2), pp.122–138.

    Article  Google Scholar 

  • Wang, X.B., Bao, P.S., Deng, W.M. (1987) Tectonic revolution of Himalaya lithosphere: Xizang ophiolite. Beijing geological publishing house, pp.138–214 (in Chinese with English Abstract).

    Google Scholar 

  • Wang, Z.H., Wang, Y.S., Xie, Y.H., et al. (2005) The Tarenben oceanic-island basalts in the middle part of the Bangong-Nujiang suture zone and their geological implications. Sedimentary Geology and Tethyan Geology, v.25(1/2), pp.153–162 (in Chinese with English Abstract).

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol v.95, pp.407–419.

    Google Scholar 

  • Wiedenbeck, M., Alle, P, Corfu, F., et al. (1995). Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand Newsl no.19, pp.1–23

    Article  Google Scholar 

  • Wolf, M.B., Wyllie, P.J. (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib. Mineral. Petrol., v.115, pp.369–383.

    Article  Google Scholar 

  • Wu, F.Y., Jahn, B.M., Wilde, S.A., et al. (2003a) Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos, v.66(3): pp.241–273.

    Article  Google Scholar 

  • Wu, F.Y., Jahn, B.M., Wilde, S.A., et al. (2003b) Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, v.67(3), pp.191–204.

    Article  Google Scholar 

  • Wu, F.Y., Li, X.H., Yang, J.H., et al. (2007). Discussions on the petrogenesis of granites. Acta Petrol. Sin., no.23, pp.1217–1238 (in Chinese).

    Google Scholar 

  • Wu, H., Li, C., Hu, P.Y., et al. (2013) The discovery of Qushenla volcanic rocks in Tasepule area of Nyima Country, Tibet, and its geological significance. Geol. Bull. China, v.32(7), pp.1014–1026 (in Chinese with English Abstract).

    Google Scholar 

  • Wu, Z.H., Ye, P.S., Hu, D.G., et al. (2003). Crust Deformation and Tectonic-Geonomorphic Evolution of the Central Tibet Plateau. Geological Publishing House, Beijing. 292 (in Chinese with English Abstract).

    Google Scholar 

  • Ye, M.F., Li, X.H., Li, W.X., Liu, Y., Li, Z.X. (2007) SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for a nearly Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Res., v.12, pp.144–156.

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan–Tibetan orogen. Annual Review of Earth and Planetary Sciences 28: 211–280.

    Article  Google Scholar 

  • Yuan, H.L., Gao, S., Liu, X.M., et al. (2004) Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Res, v.28(3), pp.353–370.

    Article  Google Scholar 

  • Zhang, K.J., Zhang, Y.X., Tang, X.C., Xia, B. (2012) Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth Sci. Rev., v.114(3), pp.36–249.

    Google Scholar 

  • Zhang, Y.X., Zhang K.J., Li B., et al. (2007) Zircon SHRIMP U-Pb geochronology and petrogenesis of the plagiogranites from the Lagkor Lake ophiolite, Gerze, Tibet, China. Chinese Sci. Bull., v.52(5), pp.651–659.

    Article  Google Scholar 

  • Zhu, D.C., Li, S.M., Peter, A. Cawood, et al. (2015). Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, DOI/10.1016/j.lithos.2015.06.023.

    Google Scholar 

  • Zhu, D.C., Mo, X.X., Niu, Y.L., et al. (2009a) Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geol., v.268: pp.298–312.

    Article  Google Scholar 

  • Zhu, D.C., Mo, X.X., Wang, L.Q., et al. (2009b) Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: constraints from zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopes. Sci. China, Ser. D Earth Sci., v.52(9), pp.1223–1239.

    Article  Google Scholar 

  • Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al. (2011) The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett., v.301, pp.241–255.

    Article  Google Scholar 

  • Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al. (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res., v.23, pp.1429–1454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentian Mi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, W., Kong, X., Zhang, D. et al. Zircon LA-ICP-MS dating and geochemical characteristics of I-type granitoids from the Yanhu area, west segment of the Bangongco-Nujiang suture (western Tibet): Petrogenesis and implications for the southward subduction of the Tethyan Ocean. J Geol Soc India 90, 335–346 (2017). https://doi.org/10.1007/s12594-017-0722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0722-8

Navigation