Skip to main content
Log in

Geochemistry of Manasbal lake sediments, Kashmir: Weathering, provenance and tectonic setting

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

This paper presents a detailed sediment chemistry investigation of the Manasbal lake, Srinagar, Jammu and Kashmir, India, which is one of the high altitude lakes in the Kashmir valley. 22 lake floor sediment samples covering the entire lake were collected and analyzed for textural characteristics, CaCO3, organic matter, TOC, TN contents, C/N ratio, major and trace element chemistry. These analyses were conducted to trace the provenance of the sediments. Textural parameters reveal that the lake sediments consist predominantly clay and silt fractions. The C/N ratio of the sediments indicates a mixed source of TOC, both autochthonous and allochthonous in origin. The log (Fe2O3/K2O) Vs. log (SiO2/ Al2O3) graph of the sediments discriminates the rock types of the catchment area that are Fe-shale, Fe-sand, wacke, shale and litharenite. The Chemical Index of Alteration (CIA) falls between 59.11 to 90.16% and Chemical Index of Weathering (CIW) between 63.97 to 99.68% and these values are higher than the Post-Archaean Australian Shale (PAAS), indicating moderate to highly chemically weathered lake floor sediments. Plagioclase Index of Alteration (PIA) values (60.74-99.63%) suggests the occurrence of plagioclase feldspars in the lake floor sediments. Geochemical characteristics signify a mixed-nature of provenance of the lake floor sediments due to the tectonic settings of the lake basin in a complex catchment area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achyuthan, H., Nagasundaram, M., Gourlan, A.T., Eastoe, C., Syed, M. Ahmad, S.M. and Veena, M.P. (2014) Mid-Holocene Indian Summer Monsoon variability off the Andaman Islands, Bay of Bengal. Quaternary Internat., pp.1–13.

    Google Scholar 

  • Agarwal, K.K. and Agarwal, G.K. (2005) Sandbox analogue model an example from the Karewa basin, Kashmir Himalayas, India. Internat. Jour. Earth Sci., v.94, pp.47–52.

    Article  Google Scholar 

  • Agarwal, K.K., Bali, R., Kumar, M.G., Srivastava, P. and Singh, P.V. (2009) Active tectonics in and around Kimin-Ziro area, Lower Subhansiri District, Arunachal Pradesh, NE India. Zeitschrift fur Geomorphologie, v.53, pp.109–120.

    Article  Google Scholar 

  • Agarwal, K.K. and Sharma, V.K. (2011) Quaternary tilt-block tectonics in parts of Eastern Kumaun Himalya, India. Zeitschrift fur Geomorphologie, v.55, pp.197–208.

    Article  Google Scholar 

  • Agarwal, K.K., Prakash, C., Ali, S.N. and Jahan, N. (2012) Morphometric analysis of Ladhiya and Lohawati river basins, Kumaun Lesser Himalaya, India. Zeitschrift fur Geomorphologie, v.56, pp.201–224

    Article  Google Scholar 

  • Ahmad, I. and Chandra, R. (2013) Geochemistry of loess-paleosol sediments of Kashmir Valley, India: Provenance and weathering. Jour. Asian Earth Sci., v.66, pp.73–89.

    Article  Google Scholar 

  • Amajor, L.C. (1987) Major and trace elements geochemistry of Albin and Touronian shales from the Southern Benue trough, Nigeria. Jour. African Earth Sci., v.6, pp.633–641.

    Google Scholar 

  • Anberre´E, J.L., Li, S., Li, S.F., Spicer, R.A., Zhang, S.T., Su, T., Deng, D. and Zhou, K.Z. (2016) Lake geochemistry reveals marked environmental change in Southwest China during the Mid Miocene Climatic Optimum. Sci. Bull., DOI 10.1007/s11434-016-1095-x.

    Google Scholar 

  • Armstrong-Altrin, J.S., Nagarajan, R, Lee Yong, I.L, Kasper-Zubillaga Juan, J. and Córdoba-Saldaña Leslie P. (2014) Geochemistry of sands along the San Nicolás and San Carlos beaches, Gulf of California, Mexico: implication for provenance Turkish Jour. Earth Sci., v.23, pp.533–558. DOI: 10.3906/yer-1309-21.

    Google Scholar 

  • Ashokkumar, R., Srinivasalu, S., Gopal, V. and Jayaprakash, M. (2016) Geochemical Weathering Indices of Core Sediments from the Off-Cuddalore Region, Tamil Nadu, India. Internat. Jour. Earth Sci. Engg., v.8(1), pp.43–51.

    Google Scholar 

  • Bagnolus, F., Meher-Homji, V.M. (1959), Bioclimatic Types of South East Asia. Travaux de la Section Scientific at Technique Institut Franscis de Pondicherry, pp.227.

    Google Scholar 

  • Bernasconi, S.M., Barbieri, A. and Simona, M. (1997) Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnol. Oceanogr. v.42 pp.1755–1765.

    Article  Google Scholar 

  • Bhat, D.K. (1989) Geology of Karewas basin, Kashmir; Geol. Surv. India Rec. 122p.

    Google Scholar 

  • Bhatia, M.R. (1983) Plate tectonics and geochemical composition of sandstones. Jour. Geol., v.91, pp.611–627.

    Article  Google Scholar 

  • Bhatia, M.R. (1985a) Rare-Earth Elements Geochemistry of Australian Paleozoic Graywackes and Mud Rocks: Provenance and tectonic control. Sediment. Geol., v.45, pp.97–113.

    Article  Google Scholar 

  • Bhatia, M.R. (1985b) Composition and classification of Paleozoic flysch mudrocks of eastern Australia: Implications in provenance and tectonic setting interpretation. Sediment. Geol., v.41, pp.249–268.

    Article  Google Scholar 

  • Bhatt, S. (2004) Proceedings of the National Conference on Kashmir, Ecology & Environment: New concerns & strategies; In: Major environmental issues in Kashmir (ed.) Bhatt S, APH Publishing Corporation, New Delhi, pp.91–98.

    Google Scholar 

  • Bianchi, T.S., Mitra, S. and Mckee, B.A. (2002) Sources of terrestrially derived organic carbon in lower Mississippi River sediments: implications for differential sedimentation and transport at the coastal margin. Mar. Chem, v.77, pp. 211–223.

    Google Scholar 

  • Burbank, D.W. and Johnson, G.D. (1982) Intermontane development in past 4 Ma. in the Northwest Himalaya. Nature London, v.289, pp.232–236.

    Google Scholar 

  • Carver, R.E. (1971) Procedures in sedimentary petrology, John Wiley and sons. Inc. New York, p.653.

    Google Scholar 

  • Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geol., v.104, pp.1–37.

    Article  Google Scholar 

  • Crook, K.A.W. (1974) Lithogenesis and geotectonics, the significance of compositional variations in flysch arenites (graywackes). In: Dott, R.H., Shaver, R.H. (Eds.), Modern and Ancient Geosynclinal Sedimentation. Society of Economic and Paleontological Mineralogy, Spec. Publ., v.19, pp.304–310.

    Chapter  Google Scholar 

  • Das, B.K. and Haake, B. (2003) Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: implications for source-area weathering, provenance and tectonic setting. Geosci. Jour., v.7, pp.299–312.

    Article  Google Scholar 

  • Dickinson, W.R., and Suczek, C.A. (1979) Plate tectonics and sandstone compositions. AAPG Bull., v.63, pp.2164–2182.

    Google Scholar 

  • Dubey, R. K. and Dar, J. A. (2015) Geotechnical susceptibility constraints on seismicity of Karewa Group and its implications in quaternary earthquakes around Kashmir Valley, India. Geotech. Geol. Eng. DOI 10.1007/s 10706-015-9844-1.

    Google Scholar 

  • Fedo, C.M., Nesbitt, H.W. and Young, G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, v.23, pp.921–924.

    Article  Google Scholar 

  • Floyd, P.A. and Leveridge, B.E. (1987) Tectonic environment of the Devonian Gramscatho basin, Cornwall: frame work mode and geochemical evidence from turbiditic sandstones. Jour. Geol. Soc. London, v.144, pp.531–542.

    Article  Google Scholar 

  • Fontes, J.C., Me´Lie‘Res, F., Gibert, E., Qing, L. and Gasse, F. (1993) Stable isotope and radiocarbon balances of two Tibetan lakes (Sumxi Co, Longmu Co) from 13000 B.P. Quaternary Sci. Rev., v.12, pp.875–887.

    Article  Google Scholar 

  • Garrels, R.M. and Christ, C.L. (1965) Solutions, minerals and equilibria. Freemen, Cooper, San Francisco, p.450.

    Google Scholar 

  • Garver, J.I. and Scott, T.J. (1995) Trace elements in shale as indicators of crustal provenance and terrain accretion in south Canadian Cordillera. Geol. Soc. Amer. Bull., v.107, pp.440–453.

    Article  Google Scholar 

  • Goosens, H. (1989) Lipids and their mode of occurrence in bacteria and sediments–II. Lipids in the sediment of a stratified, freshwater lake. Org. Geochem, v.14, pp.27–41.

    Article  Google Scholar 

  • Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The North American shale composite: Its compilation and major and trace element characteristics. Geochim. Cosmochim. Acta, v.48, pp.2469–2482.

    Article  Google Scholar 

  • Hamilton, D.P and Schaldow, S.G. (1997) Prediction of water quality in lakes and reservoirs. Part I–Model description; Ecol. Model, v.96, pp.91–110.

    Article  Google Scholar 

  • Harnois, L. (1988) The CIW index: A new chemical index of weathering. Sediment. Geol., v.55, pp.319–322.

    Article  Google Scholar 

  • Hayashi, K.I., Fujisawa, H., Holland, H.D. and Ohmoto, H. (1997) Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta, v.61, pp. 4115–4137.

    Article  Google Scholar 

  • Hedges, J.I. and Keil, R.G. (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., v.49, pp.81–115.

    Article  Google Scholar 

  • Herron, M.M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. Jour. Sediment. Petrol., v.58, pp.820–829.

    Google Scholar 

  • Jamila, I., Yousuf, A.R., Praveen, M., Hassan, K., Rehman, M. and Sheikh, B.A. (2014) Rotifer community in Manasbal Lake of Kashmir. Internat. Jour. Fisheries and Aquatic Studies, v.1(6) pp.190–198.

    Google Scholar 

  • Jin, Z.D., Wang, S., Shen, J. and Wang, Y. (2003) Carbonate versus silicate Sr isotope in lake sediments and its response to the little ice age. Chin. Sci. Bull., v.48, pp.95–100.

    Article  Google Scholar 

  • Jonathan, M.P., Ram-Mohan, V. and Srinivasalu, S. (2004) Geochemical variations of major and trace elements in recent sediments, off the Gulf of Mannar, southeast coast of India. Environ. Geol., v.45, pp.466–480.

    Article  Google Scholar 

  • Kaul, V. (1977) Limnological Survey of Kashmir Lakes with Reference to Trophic Status and Conservation. Internat. Jour. Ecol. Environ. Sci., v.3, pp.29–44.

    Google Scholar 

  • Kaul, V., Handoo, J.K. and Qadri B, A. (1977) Seasons of Kashmir. Geographical Rev. India, v.41(2), pp.123–130.

    Google Scholar 

  • Krishnamurthy, R.V., Bhattacharya, S.K. and Kusumgar, S. (1986) Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa Lake sediments, India. Nature, v.323, pp.150–152.

    Article  Google Scholar 

  • Krishnan, M.S. (1968) Geology of India and Burma (Madras: Higging Thans Ltd.).

    Google Scholar 

  • Krumbein, W.C and Pettijohn, F.J. (1938) Manual of sedimentary petrography, New York, Appleton-Century-Crofts, Inc.

    Google Scholar 

  • Kusumgar, S., Agrawal, D.P., Bhandari, N., Deshpande, R.D., Raina, A., Sharma, C. and Yadava, M.G. (1992) Lake sediments from the Kashmir Himalayas: inverted 14C Chronology and its implications. Radiocarbon, v.34(3), pp.561–565.

    Article  Google Scholar 

  • Lerman, A. (1978) Lake: chemistry, geology, physics. Springer, Berlin.

    Book  Google Scholar 

  • Loring, D.H. and Rantala, R.T.T. (1992) Manual for the geochemical 217 analyses of marine sediments and suspended particulate matter. Earth Sci. Rev., v.32, pp.235–283.

    Article  Google Scholar 

  • McLennan, S.M. (1989), Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Rev. Mineral., v.21, pp.170–199.

    Google Scholar 

  • McLennan, S.M. (1993) Weathering and global denudation. Jour. Geol., v.101, pp.295–303.

    Article  Google Scholar 

  • McLennan, S.M. and Taylor, J.R. (1991) Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. Jour. Geol., v.99, pp.1–21.

    Article  Google Scholar 

  • Meyers, P.A. (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem., v.27, pp.213–250.

    Article  Google Scholar 

  • Meyers, P.A. (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org. Geochem., v.34, pp.261–289.

    Article  Google Scholar 

  • Meyers, P.A. and Eadie, B.J. (1993) Sources, degradation, and recycling of organic matter associated with sinking particles in Lake Michigan. Org. Geochem, v.20, pp.47–56.

    Article  Google Scholar 

  • Meyers, P.A. and Lallier-Vergès, E. (1999) Lacustrine sedimentary organic matter of Late Quaternary paleoclimates. Jour. Paleolimnology, v.21, pp.345–372.

    Article  Google Scholar 

  • Meyers, P.A. and Teranes J.L. (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments—vol II Physics, chemistry and technology. Kluwer, Dordrecht, pp.239–269.

    Google Scholar 

  • Meyers, P.A., Leenheer, M.J., Eadie, B.J. and Maule, S.J. (1984) Organic geochemistry of suspended and settling particulate matter in Lake Michigan. Geochim. Cosmochim. Acta, v.48, pp.443–452.

    Article  Google Scholar 

  • Nagarajan, R., Roy, P. D., Jonathan, M.P., Lozano, R., Kessler F. L. and Prasanna, M.V. (2014) Geochemistry of Neogene sedimentary rocks from Borneo Basin, East Malaysia: Paleoweathering, provenance and tectonic setting. Chemie der Erde-Geochemistry, v.74 (1), pp.139–146.

    Article  Google Scholar 

  • Nesbitt, H.W., Markovics, G. and Price, R.C. (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta, v.44, pp.1659–1666.

    Article  Google Scholar 

  • Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.199, pp.715–717.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim.Cosmochim. Acta, v.48, pp.1523–1534.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M. (1989) Formation and diagenesis of weathering profiles. Jour. Geol., v.97, pp.129–147.

    Article  Google Scholar 

  • Ogala, K., Jude, E., Mike, I., Akaegbobi, O., Omolemo, J., Omo-Irabor, O. and Robert, B. (2009) Statistical analysis of geochemical distribution of major and trace elements of the Maastrichtian coal measures in the Anambra basin Nigeri. Petroleum and Coal v.51(4), pp.260–269.

    Google Scholar 

  • Rashid, I., Farooq, M., Muslim, M. and Romshoo, S.A. (2013) Internat. Jour. Environ. Sci., v.3(6) pp.2036–2047.

    Google Scholar 

  • Rollinson, H.R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, p.352.

    Google Scholar 

  • Rose, N.L., Boyle, J.F., Du, Y., Yi, C., Dai, X., Appleby, P.G., Bennion, H., Cai, S. and Yu, L. (2004) Sedimentary evidence for changes in the pollution status of Taihu in the Jiangsu region of eastern China. Jour. Paleolimnol v.32, pp.41–51.

    Article  Google Scholar 

  • Roser, B.P. and Korsch, R.J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Jour. Geol., v.94, pp.635–650.

    Article  Google Scholar 

  • Sarah, S., Jeelani, G. and Ahmed, S. (2011) Assessing Variability of Water Quality in a Groundwater-Fed Perennial Lake of Kashmir Himalayas Using Linear Geostatistics. Jour. Earth System Sci., v.120(3), pp.399–411.

    Article  Google Scholar 

  • Schwab, F.L. (1975) Frame work mineralogy and chemical composition of continental margin-type sandstones. Geology, v.3, pp.487–490.

    Article  Google Scholar 

  • Sheikh, J.A., Jeelani, G., Gavali, R.S. and Shah, R.A. (2014) Weathering and anthropogenic influences on the water and sediment chemistry of Wular Lake, Kashmir Himalaya. Environ Earth Sci, v.7, pp.2837–2846.

    Article  Google Scholar 

  • Shepard, F. (1954) Nomenclature based on sand-silt-clay ratios. Jour. Sediment. Petrol., v.24, pp.151–158.

    Google Scholar 

  • Singh, I.B. (1982) Sedimentation Pattern in the Karewa Basin, Kashmir Valley, India, and its Geological significance. Jour. Paleontol. Soc. India. v.27, pp.71–110.

    Google Scholar 

  • Smol, J. (2002) Pollution of lakes and rivers: a paleoenvironmental perspective. Arnold, London.

    Google Scholar 

  • Subramanium, V. (2000) Water Quantity and Quality Perspective in South Asia. England: Kingston International Publishers, pp.1–13.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its composition and Evolution. Blackwell, Oxford, 312p.

    Google Scholar 

  • Thornton, S.F. and Mcmanus, J. (1994) Application of Organic Carbon and Nitrogen Stable Isotope and C/N Ratios as Source Indicators of Organic Matter Provenance in Estuarine Systems: Evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Sci., v.38, pp.219–233.

    Article  Google Scholar 

  • Trisal, C.L. (1985) Trophic status of Kashmir Valley lakes. Geobios Spl. Vol-I.17179. In: Mishra S.D., Sen, D.N., Ahmed, I. (Eds) Proc. National Symposium on Evaluation of Environment, Jodhpur, India.

    Google Scholar 

  • Vital, H., Stattegger, K. and Garbe-Schonberg, C.D. (1999) Composition and trace-element geochemistry of detrital clay and heavy mineral suites of the lowermost Amazon river: a provenance study. Jour. Sediment. Res., v.69, pp.563–575.

    Article  Google Scholar 

  • Wadia, D.N. (1975) Geology of India (New Delhi: Tata McGraw Hill Publishing Co.).

    Google Scholar 

  • Wang, Y., Zhu, L.P., Wang, J.B., Ju, J.T. and Lin, X. (2012) The spatial distribution and sedimentary processes of organic matter in surface sediments of Nam Co, Central Tibetan Plateau. Chinese Sci. Bull., v.57, pp.4753–4764.

    Article  Google Scholar 

  • Wronkiewicz, D.J. and Condie K.C. (1987) Geochemistry of Archean Shales from the Witwatersrand super group, South Africa: source area weathering and provenance. Geochim. Cosmochim. Acta, v.51, pp.2401–5416.

    Article  Google Scholar 

  • Zutshi, D.P., Kaul, V. and Vass, K.K. (1972) Limnological Studies of High Altitude Kashmir lakes. Verhandlungen des Internationalen Verein Limnologie, v.118, pp.599–604.

    Google Scholar 

  • Zutshi, D. P. and Khan, M. A. (1978) On the Lake topology of Kashmir. Environmental physiology and ecology of plants. In Singh, T.V. and Kaur, J., eds., Studies in the Eco-development of the Himalayas Mountain and Men. Lucknow, India, Print House, pp.465–472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Achyuthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babeesh, C., Lone, A. & Achyuthan, H. Geochemistry of Manasbal lake sediments, Kashmir: Weathering, provenance and tectonic setting. J Geol Soc India 89, 563–572 (2017). https://doi.org/10.1007/s12594-017-0645-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0645-4

Navigation