Skip to main content
Log in

Determination of the fractal dimension of a shore platform profile

  • Published:
Journal of the Geological Society of India

Abstract

Morphological studies of shore platforms have focused on elements like width, gradient and elevation, while mostly ignoring the surface roughness as a morphometric attribute. This paper uses the Roughness-length method to show how the Fractal Dimension of a shore platform profile can be obtained. The higher the value of the fractal dimension, the higher is the roughness of the platform. The studied profile is situated in Houghton Bay on the south coast of Wellington, New Zealand. The fractal dimension of the profile under consideration was found to be 1.314. However, one profile is not sufficient to provide information about the surface roughness of a shore platform. Therefore, a number of profiles should be taken to have an idea about surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi, A., Neyshabouri, M.R., Rouhipour, H. and Asadi, H. (2011) Fractal dimension of soil aggregates as an index of soil erodibility. Jour. Hydrol., v.400, pp.305–311.

    Article  Google Scholar 

  • Armstrong, A. (1986) On the fractal dimension of some transient soil properties. Jour. Soil Sci., v.37, pp.641–652.

    Article  Google Scholar 

  • Begg, J.G. and Mazengarb, C. (1996) Geology of the Wellington area, scale 1: 50000. Inst. of Geol. Nucl. Sci. Geol. Map, v.22, Lower Hutt, New Zealand.

    Google Scholar 

  • Begg, J.G. and Mcsaveney, M.J. (2005) Wairarapa fault rupturevertical deformation in 1855 and a history of similar events from Turakirae Head. In: J. Townend, R. Langridge, and A. Jones, A. (comp.), Proc. 1855 Wairarapa Earthquake Symp. Greater Wellington Regional Council, Wellington, pp.21–30.

    Google Scholar 

  • Bell, T. (1979) Mesoscale sea floor roughness. Deep Sea Res., v.26, pp.65–76.

    Article  Google Scholar 

  • Berryman, K.R. (1993) Age, height, and deformation of Holocene marine terraces at Mahia Peninsula, Hikurangi subduction margin, New Zealand. Tectonics, v.12, pp.1347–1364.

    Article  Google Scholar 

  • Brown, S. (1987) A note on the description of surface roughness using fractal dimension. Geophy. Res. Lett., v.14, pp.1095–1098.

    Article  Google Scholar 

  • Burg, J.P. (1967) Maximum entropy spectral analysis. In: D.G. Childers (Ed.), Modern Spectrum Analysis. IEEE Press, New York, pp. 34–41.

    Google Scholar 

  • Burrough, P.A. (1981) Fractal dimensions of landscapes and other environmental data. Nature, v.294, pp.240–242.

    Article  Google Scholar 

  • Carr, J.R. (1997) Statistical self-affinity, fractal dimension and geologic interpretation. Engg. Geol., v.48, pp.269–282.

    Article  Google Scholar 

  • Carter, L. and Lewis, K. (1995) Variability of the modern sand cover on a tide and storm driven inner shelf, south Wellington, New Zealand. New Zealand Jour. Geol. Geophys., v.38, pp.451–470.

    Article  Google Scholar 

  • Chakraborty, J., Mahale, V., Shashikumar, K. and Srinivas, K. (2007) Quantitative characteristics of the Indian Ocean seafloor relief using fractal dimension. Indian Jour. Mar. Sci., v.36, pp.152–161.

    Google Scholar 

  • Charola, A.E., Grissom, C.A., Erder, E., Wachowiak, M.J. and Oursler, D. (1996) Measuring surface roughness: three techniques. In: J. Riederer (Ed.), Proc. 8th Internat. Congress on Deterioration and Conservation of Stone. Moller, Berlin, pp.1421–1434.

    Google Scholar 

  • Demets, C., Gordon, R.G., Argus, D.F. and Stein, S. (1990) Current plate motions. Geophys. Jour. Int., v.101, pp.425–478.

    Article  Google Scholar 

  • Dimri, V.P., Srivastava, R.P. and Vedanti, N. (2011) Fractals and chaos. In: H.K. Gupta (Ed.), Encyclopedia of Solid Earth Geophysics. Springer, Dordrecht, pp.297–302.

    Chapter  Google Scholar 

  • Elliott, J.K. (1989) An investigation of the change in surface roughness through time on the foreland of Austre Okstindbreen, north Norway. Comp. Geosci., v.15, pp.209–217.

    Article  Google Scholar 

  • Gallant, J.C., Moore, I.D., Hutchinson, M.F. and Gessler, P. (1994) Estimating fractal dimension of profiles: a comparison of methods. Math. Geol., v.26, pp.455–481.

    Article  Google Scholar 

  • Gao, J. and Xia, Z. (1996) Fractals in physical geography. Prog. Phys. Geog., v.20, pp.178–191.

    Article  Google Scholar 

  • Goodchild, M.F. (1980) Fractals and the accuracy of geographical measures. Math. Geol., v.12, pp.85–98.

    Article  Google Scholar 

  • Goodchild, M.F. and Mark, D.M. (1987) The fractal nature of geographic phenomena. Ann. Assoc Am. Geog. v.77, pp.265–278.

    Article  Google Scholar 

  • Håkanson, L. (1978) The length of closed geomorphic lines. Math. Geol., v.10, pp.141–167.

    Article  Google Scholar 

  • Hirata, T. (1989) Fractal dimension of fault systems in Japan: fractal structure in the rock fracture geometry of at various scales. Pure Appld. Geophys., v.131, pp.157–170.

    Article  Google Scholar 

  • Kennedy, D.M. and Beban, J.G. (2005) Shore platform morphology on a rapidly uplifting coast, Wellington, New Zealand. Earth Surf. Proc. Landf., v.30, pp.823–832.

    Article  Google Scholar 

  • Klinkenberg, B. (1992) Fractals and morphometric measures: is there a relationship? Geomorphology, v.5, pp.5–20.

    Article  Google Scholar 

  • Klinkenberg, B. and Goodchild, M.F. (1992) The fractal properties of topography: a comparison of methods. Earth Surf. Proc. and Landf., v. 17, pp.217–234.

    Article  Google Scholar 

  • Kulatilake P.H.S.W., Um, J. and Pan, G. (1998) Requirements for accurate quantification of self-affine roughness using the variogram method. Int. Jour. of Solid Struc., v.35, pp.4167–4189.

    Article  Google Scholar 

  • Lam, N.S.N. and Quattrochi, D.A. (1992) On the issues of scale, resolution and fractal analysis in the mapping sciences. The Prof. Geog., v.44, pp.88–98.

    Article  Google Scholar 

  • Malinverno, A. (1990) A simple method to estimate the fractal dimension of a self-affine series. Geophy. Res. Lett., v.17, pp.1953–1956.

    Article  Google Scholar 

  • Mandal, P., Mabawonku, A.O. and Dimri, V.P. (2005) Self organized fractal seismicity of reservoir triggered earthquakes in the Koyna-Warna seismic zone, western India. Pure Appld. Geophy., v.162, pp.73–90.

    Article  Google Scholar 

  • Mandelbrot, B. (1967) How long is the coastline of Britain? Statistical self similarity and fractional dimension. Science, v.156, pp.636–638.

    Article  Google Scholar 

  • Mandelbrot, B.B. (1977) Fractals: Form, Chance and Dimensions. Freeman, San Francisco, 365p.

    Google Scholar 

  • Mandelbrot, B.B. (1983) The Fractal Geometry of Nature. Freeman, New York, 468p.

    Google Scholar 

  • Mareschal, J.C. (1989) Fractal reconstruction of sea-floor topography. Pure Appld. Geophys., v.131, pp.197–210.

    Article  Google Scholar 

  • Mark, D. and Aronson, P. (1984) Scale-dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. Math. Geol., v.16, pp.67–683.

    Google Scholar 

  • Mccarroll, D. (1992) A new instrument and techniques for the field measurement of rock surface roughness. Zeit. für Geomorph. N.F., v.36, pp.69–79.

    Google Scholar 

  • Mccarroll, D. (1997) A template for calculating rock surface roughness. Earth Surf. Proc. Landf., v.22, pp.1229–1230.

    Article  Google Scholar 

  • Mcconchie, J., (2000) From shaky beginnings: a geomorphic analysis of Wellington. In: J. McConchie, D. Winchester and R. Willis (Eds.), Dynamic Wellington. Institute of Geography, Victoria University of Wellington, Wellington, pp.9–33.

    Google Scholar 

  • Mcsaveney, M.J., Graham, I.J., Begg, J.G., Beu, A.G., Hull, A.G., Kim, K. and Zondervan, A. (2006) Late Holocene uplift of beach ridges at Turakirae Head, south Wellington coast, New Zealand. New Zeal. Jour. Geol. Geophy., v.49, pp.337–358.

    Article  Google Scholar 

  • Morton, J.E. (2004) Seashore ecology of New Zealand and the Pacific. Bateman, Auckland, 504p.

    Google Scholar 

  • Naylor, L.A., Stephenson, W.J. and Trenhaile, A.S. (2010) Rock coast geomorphology: recent advances and future research directions. Geomorphology, v.114, pp.3–11.

    Article  Google Scholar 

  • Oleschko, K., Parrot, J.F., Ronquillo, G., Shoba, S., Stoops, G. and Marcelino, V. (2004) Weathering: towards a fractal quantifying. Math. Geol., v.36, pp.607–626.

    Article  Google Scholar 

  • Oliver, M. and Webster, R. (1986). Semi-variograms for modeling the spatial pattern of landforms and soil properties. Earth Surf. Proc. Landf., v.11, pp.491–504.

    Article  Google Scholar 

  • Pillans, B. (1986) A late Quaternary uplift map for North Island, New Zealand. Bull. Roy. Soc. New Zeal., v.24, pp.409–417.

    Google Scholar 

  • Pillans, B. and Huber, P. (1995) Interpreting coseismic deformation using Holocene coastal deposits, Wellington, New Zealand. Quat. Int., v.26, pp.87–95.

    Article  Google Scholar 

  • Quale, A.M. (1984) Weather and sea condition of Wellington Harbour and South Coast. New Zeal. Met. Serv. Tech. Info. Circ., v.196.

  • Roberts, S., Sanderson, D.J. and Gurniel, P. (1998) Fractal analysis of Sn-W mineralization from central Iberia, insights into the role of fracture connectivity in the formation of an ore deposit. Econ. Geol., v.93, pp.360–365.

    Article  Google Scholar 

  • Rouai, M. and Jaaidi, E.B. (2003) Scaling properties of landslides in the Rif Mountains of Morocco. Engg. Geol., v.68, pp.353–359.

    Article  Google Scholar 

  • Sulebak, J.R. (1999) Fractal analysis of surface topography. Nor. Geogr. Tidsskr., v.57, pp.213–225.

    Google Scholar 

  • Sunamura, T. (1992) Geomorphology of rocky coasts. John Wiley and Sons, Chichester, 314p.

    Google Scholar 

  • Suneson, N.H. (1992) Geology of Torlesse rocks around the Wellington coast between Paekakariki and Pencarrow Head. Inst. Geol. Nucl. Sci. Rep., v.92/8, pp.1–52.

    Google Scholar 

  • Sunmonu, L.A. and Dimri, V.P. (1999) Fractal analysis and seismicity of Bengal basin and Tripura fold belt, northeast India. Jour. Geol. Soc. India, v.53, pp.587–592.

    Google Scholar 

  • Tanner, B.R., Perfect, E. and Kelley, J.T. (2006) Fractal analysis of Maine’s glaciated shoreline tests established coastal classification scheme. Jour. Coast. Res, v.22, pp.1300–1304.

    Article  Google Scholar 

  • Trenhaile, A.S. (1987) The geomorphology of rock coasts. Clarendon Press, Oxford, 384p.

    Google Scholar 

  • Trenhaile, A.S. (2002a) Rock coasts, with particular emphasis on shore platforms. Geomorphology, v.48, pp.7–22.

    Article  Google Scholar 

  • Trenhaile, A.S. (2002b) Modelling the development of marine terraces on tectonically mobile rock coasts. Mar. Geol., v.185, pp.34–361.

    Article  Google Scholar 

  • Wang, Q., Deng, J., Liu, H., Yang, L., Wan, L. and Zhang, R. (2010) Fractal models for ore reserve estimation. Ore Geol. Rev., v.37, pp.2–14.

    Article  Google Scholar 

  • Whalley, W.B. and Rea, B.R. (1994) A digital surface roughness meter. Earth Surf. Proc. Landf., v.19, pp.809–814.

    Article  Google Scholar 

  • Xu, T., Moore, I.D. and Gallant, J.C. (1993) Fractals, fractal dimensions and landscapes — a review. Geomorphology, v.8, pp.245–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasgupta, R. Determination of the fractal dimension of a shore platform profile. J Geol Soc India 81, 122–128 (2013). https://doi.org/10.1007/s12594-013-0011-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-013-0011-0

Keywords

Navigation