Skip to main content

Advertisement

Log in

Study of a Multi-delayed SEIR Epidemic Model with Immunity Period and Treatment Function in Deterministic and Stochastic Environment

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper a multi-delayed epidemic SEIR model with immunity period and treatment function has been considered in deterministic and stochastic environment. The delays are taken as immunity delay and treatment delay. Firstly, in deterministic situation, a feasible region has been obtained in parametric space, where the solutions of the system are bounded and positive. The conditions for stability of both endemic and epidemic equilibrium have been derived. Later, in presence of stochasticity the dynamics for the SEIR model has been discussed in both presence and absence of delays. Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC) sensitivity analysis, which is an efficient tool often employed in uncertainty analysis is used to explore the entire parameter space of a model. To study the LHS/PRCC sensitivity analysis for our model, we have chosen a suitable set of parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexander, M.E., Moghadas, S.M.: Bifurcation analysis of SIRS epidemic model with generalized incidence. SIAM J. Appl. Math. 65(5), 1794–1816 (2005)

    Article  MathSciNet  Google Scholar 

  2. Enatsu, Y., Messina, E., Muroya, Y., Nakata, Y., Russo, E., Vecchio, A.: Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates. Appl. Math. Comput. 218, 5327–5336 (2012)

    MathSciNet  Google Scholar 

  3. Chen, F.F., Hong, L.: Stability and Hopf bifurcation analysis of a delayed SIRS epidemic model with nonlinear saturation incidence. J. Dyn. Control 12, 79–85 (2014)

    Google Scholar 

  4. Xue, Y.K., Li, T.T.: Stability and Hopf bifurcation for a delayed SIR epidemic model with logistic growth. Abstr. Appl. Anal. 916130, 11 (2013)

    MathSciNet  Google Scholar 

  5. Yang, H., Wei, J.J.: Stability of SIR epidemic model with a class of nonlinear incidence rates. Appl. Math. A J. Chin. Univ. 29, 11–16 (2014)

    Google Scholar 

  6. Wen, L.S., Yang, X.F.: Global stability of a delayed SIRS model with temporary immunity. Chaos Solitons Fractals 38, 221–226 (2008)

    Article  MathSciNet  Google Scholar 

  7. Zhang, Z.Z., Yang, H.Z.: Hopf bifurcation analysis for a delayed SIRS epidemic model with a nonlinear incidence rate. J. Donghua Univ. (Eng. Ed.) 31, 201–206 (2014)

    Google Scholar 

  8. Zamana, G., Kang, Y.H., Jung, H.: Optimal treatment of an SIR epidemic model with time delay. BioSystems 98, 43–50 (2009)

    Article  Google Scholar 

  9. Zhou, Y., Zhang, W., Yuan, S.: Survival and stationary distribution of a SIR epidemic model with stochastic perturbations. Appl. Math. Comput. 244, 118–131 (2014)

    MathSciNet  Google Scholar 

  10. Wen, L., Yang, X.: Global stability of a delayed SIRS model with temporary immunity. Chaos Solitons Fractals 38, 221–226 (2008)

    Article  MathSciNet  Google Scholar 

  11. Zhou, X., Cui, J.: Analysis of stability and bifurcation for an SEIR epidemic model with saturated recovery rate. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4438–4450 (2011)

    Article  MathSciNet  Google Scholar 

  12. Zhang, J., Jia, J., Song, X.: Analysis of an SEIR epidemic model with saturated incidence and saturated treatment function, Hindawi Publishing Corporation. Sci. World J. 910421, 11 (2014). https://doi.org/10.1155/2014/910421

    Article  Google Scholar 

  13. Artalejo, J., Economou, A., Lopez-Herrero, M.: The stochastic SEIR model before extinction: computational approaches. Appl. Math. Comput. 265, 1026–1043 (2015)

    MathSciNet  Google Scholar 

  14. Zhang, X., Wang, K.: Stochastic SEIR model with jumps. Appl. Math. Comput. 239, 133–143 (2014)

    MathSciNet  Google Scholar 

  15. Liu, M., Bai, C., Wang, K.: Asymptotic stability of a two-group stochastic SEIR model with infinite delays. Commun. Nonlinear Sci. Numer. Simul. 19, 3444–3453 (2014)

    Article  MathSciNet  Google Scholar 

  16. Liu, Q., Jiang, D., Shi, N., Hayat, T., Alsaedi, A.: Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence. Phys. A 462, 870–882 (2016)

    Article  MathSciNet  Google Scholar 

  17. Liu, J.: Bifurcation analysis for a delayed SEIR epidemic model with saturated incidence and saturated treatment function. J. Biol. Dyn. 13, 461–480 (2019)

    Article  MathSciNet  Google Scholar 

  18. Wang, W.: Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201, 58–71 (2006)

    Article  MathSciNet  Google Scholar 

  19. Ndairoua, F., Area, I., Nieto, J.J., Torres, D.: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 135, 109846 (2020)

    Article  MathSciNet  Google Scholar 

  20. Wang, W., Ruan, S.: Bifurcation in an epidemic model with constant removal rate of the infectives. J. Math. Anal. Appl. 291(2), 775–793 (2004)

    Article  MathSciNet  Google Scholar 

  21. Wang, W.D.: Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201(1–2), 58–71 (2006)

    Article  MathSciNet  Google Scholar 

  22. Eckalbar, J.C., Eckalbar, W.L.: Dynamics of an epidemic model with quadratic treatment. Nonlinear Anal. Real World Appl. 12(1), 320–332 (2011)

    Article  MathSciNet  Google Scholar 

  23. Zhang, X., Liu, X.: Backward bifurcation of an epidemic model with saturated treatment function. J. Math. Anal. Appl. 348, 433–443 (2008)

    Article  MathSciNet  Google Scholar 

  24. Blyuss, K.B., Kyrychko, Y.N.: Stability and bifurcations in an epidemic model with varying immunity period. Bull. Math. Biol. 72, 490–505 (2010). https://doi.org/10.1007/s11538-009-9458-y

    Article  MathSciNet  Google Scholar 

  25. Zhang, Y.Y., Jia, J.W.: Hopf bifurcation of an epidemic model with a nonlinear birth in population and vertical transmission. Appl. Math. Comput. 230, 164–173 (2014)

    Article  MathSciNet  Google Scholar 

  26. Cai, L., Li, X., Ghosh, M., Guo, B.: Stability analysis of an HIV/AIDS epidemic model with treatment. J. Comput. Appl. Math. 229, 313–323 (2009)

    Article  MathSciNet  Google Scholar 

  27. Blower, S.M., Hartel, D., Dowlatabadi, H., Anderson, R.M., May, R.M.: Drugs, sex and HIV: amathematical model for New York city. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 331(1260), 171–187 (1991)

    Article  Google Scholar 

  28. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  Google Scholar 

  29. Jana, D., Agrawal, R., Upadhyay, R.K., Samanta, G.P.: Ecological dynamics of age selective harvesting of fish population: maximum sustainable yield and its control strategy. Chaos Solitons Fractals 93, 111–122 (2016)

    Article  MathSciNet  Google Scholar 

  30. Kundu, S., Maitra, S.: Dynamical behaviour of a delayed three species predator-prey model with cooperation among the prey species. Nonlinear Dyn. 92, 627–643 (2018)

    Article  Google Scholar 

  31. Ma, J., Zhang, Q., Gao, Q.: Stability of a three-species symbiosis model with delays. Nonlinear Dyn. 67(1), 567–572 (2012)

    Article  MathSciNet  Google Scholar 

  32. Jana, D., Banerjee, A., Samanta, G.P.: Degree of prey refuges: control the competition among prey and foraging ability of predator. Chaos Solitons Fractals 104, 350–362 (2017)

    Article  MathSciNet  Google Scholar 

  33. Jana, D., Agrawal, R., Upadhyay, R.K.: Dynamics of generalist predator in a stochastic environment: effect of delayed growth and prey refuge. Appl. Math. Comput. 268, 1072–1094 (2015)

    MathSciNet  Google Scholar 

  34. Zhang, Y., Zhang, Q.: Dynamic behavior in a delayed stage-structured population model with stochastic fluctuation and harvesting. Nonlinear Dyn. 66, 231–245 (2011)

    Article  MathSciNet  Google Scholar 

  35. Nisbet, R.M., Gurney, W.S.C.: Modelling Fluctuating Populations. Wiley Interscience, New York (1982)

    Google Scholar 

  36. Jana, D., Samanta, G.P.: Role of multiple delays in ratio-dependent prey-predator system with prey harvesting under stochastic environment. Neural Parallel Sci. Comput. 22, 205–222 (2014)

    MathSciNet  Google Scholar 

  37. Jana, D.: Influence of gestation delay and predator's interference in predator-prey interaction under stochastic environment. Int. J. Stoch. Anal. 501836, 9 (2014). https://doi.org/10.1155/2014/501836

    Article  MathSciNet  Google Scholar 

  38. Li, F., Zhang, S., Meng, X.: Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function. Comput. Appl. Math. 38, 95 (2019)

    Article  MathSciNet  Google Scholar 

  39. Kundu, S., Maitra, S.: Asymptotic behaviors of a two prey one predator model with cooperation among the prey species in a stochastic environment. J. Appl. Math. Comput. 61, 505–531 (2019)

    Article  MathSciNet  Google Scholar 

  40. de Aurelio, A., de los Reyes, Aurelio A., V., Escaner, Jose Maria L., IV.: Dengue in the Philippines: model and analysis of parameters affecting transmission. J. Biol. Dyn. 12(1), 894–912 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Kundu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix:

Appendix A

Derivation of \(k_i\) and \(w_i, i=1, 2,\ldots , 10\):

$$\begin{aligned} k_1= & {} k_5=2a_3+(a_5+a_1)\tau _1+a_6\tau _2,\\ k_2= & {} (a_1+a_8)\tau _1+a_3\tau _2,\\ k_3= & {} k_6=2a_2+\frac{(2a_4+\eta _{12}+\beta _1)\tau _1}{2}+\frac{(2a_3+a_1+a_7-\beta _1-\eta _{12})\tau _2}{2},\\ k_4= & {} k_7=(2a_4+2a_6+a_2)+\frac{(\beta _1+\eta _{12})\tau _2}{2}+\frac{(a_5+a_7-\beta _1-\eta _{12})\tau _1}{2},\\ k_8= & {} \frac{(a_5+2a_6+a_8)\tau _2}{2},\\ k_9= & {} k_{10}=2(\beta _1+\eta _{12})\tau _1+(a_2+a_4)\tau _2+\frac{(a_7+a_8-\beta _1-\eta _{12})(\tau _1+\tau _2)}{2}.\\ w_1(t)= & {} S^2(t),\\ w_2(t)= & {} E^2(t),\\ w_3(t)= & {} P_1^2(t)+\{a_6 \beta _1+\beta _1(a_7-\beta _1-\eta _{12})\}\\&\int _{t-\tau _1}^{t}\int _{s}^{t}I^2(l) dl ds+\{a_6 \eta _{12}+\eta _{12} (a_7-\beta _1-\eta _{12})\}\int _{t-\tau _2}^{t}\int _{s}^{t}I^2(l) dl ds,\\ w_4(t)= & {} P_2^2(t)+\{a_8 \beta _1+\beta _1(\beta _1+\eta _{12})\}\\&\int _{t-\tau _1}^{t}\int _{s}^{t}I^2(l) dl ds+\{a_8 \eta _{12}+\eta _{12} (\beta _1+\eta _{12})\}\int _{t-\tau _2}^{t}\int _{s}^{t}I^2(l) dl ds,\\ w_5(t)= & {} S(t)E(t),\\ w_6(t)= & {} S(t) P_1(t)+\frac{(a_1+a_2)\beta _1}{2}\int _{t-\tau _1}^{t}\int _{s}^{t}I^2(l) dl ds+\frac{(a_1+a_2)\eta _{12}}{2}\int _{t-\tau _2}^{t}\int _{s}^{t}I^2(l) dl ds,\\ w_7(t)= & {} S(t) P_2(t)+\frac{(a_1+a_2)\beta _1}{2}\int _{t-\tau _1}^{t}\int _{s}^{t}I^2(l) dl ds+\frac{(a_1+a_2)\eta _{12}}{2}\int _{t-\tau _2}^{t}\int _{s}^{t}I^2(l) dl ds,\\ w_8(t)= & {} E(t) P_1(t)+\frac{(a_3+a_4+a_5)\beta _1}{2}\int _{t-\tau _1}^{t}\int _{s}^{t}I^2(l) dl ds\\&+\frac{(a_3+a_4+a_5)\eta _{12}}{2}\int _{t-\tau _2}^{t}\int _{s}^{t}I^2(l) dl ds,\\ w_9(t)= & {} E(t) P_2(t)+\frac{(a_3+a_4+a_5)\beta _1}{2}\int _{t-\tau _1}^{t}\int _{s}^{t}I^2(l) dl ds\\&+\frac{(a_3+a_4+a_5)\eta _{12}}{2}\int _{t-\tau _2}^{t}\int _{s}^{t}I^2(l) dl ds,\\ w_{10}(t)= & {} P_1(t)P_2(t)+\frac{\beta _1\{-a_8-(\beta _1+\eta _{12})+a_6 +(a_7-\beta _1-\eta _{12})\}}{2}\int _{t-\tau _1}^{t}\int _{s}^{t}I^2(l) dl ds\\&+\frac{\eta _{12} \{-a_8-(\beta _1+\eta _{12})+a_6+(a_7-\beta _1-\eta _{12})\}}{2} \int _{t-\tau _2}^{t}\int _{s}^{t}I^2(l) dl ds. \end{aligned}$$

Appendix B

Derivation of \(\Lambda _1\), \(\Lambda _2\), \(\Lambda _3\), \(\Lambda _4\)

$$\begin{aligned} \Lambda _1= & {} 2a_1k_1+a_3k_5+\frac{a_1\beta _1\tau _1+a_1\eta _{12} \tau _2}{2}(k_7-k_6) +\frac{a_3\beta _1\tau _1+a_3\eta _{12} \tau _2}{2}(k_9-k_8),\\ \Lambda _2= & {} 2a_5k_2-(a_6\beta _1\tau _1+a_6\eta _{12}\tau _2)k_3+\frac{2a_6-a_5\beta _1\tau _1 -a_5\eta _{12}\tau _2}{2}k_8\\&+\frac{a_5\beta _1\tau _1+a_5\eta _{12}\tau _2}{2}k_9 +\frac{a_6\beta _1\tau _1+a_6\eta _{12}\tau _2}{2}k_{10},\\ \Lambda _3= & {} k_3[(a_7-\beta _1-\eta _{12})(2-2\beta _1\tau _1-2\eta _{12}\tau _2) -a_6(\beta _1 \tau _1+\eta _{12} \tau _2)]\\&+k_4[(\beta _1+\eta _{12})(2\beta _1\tau _1 +2\eta _{12}\tau _2)+a_8(\beta _1\tau _1+\eta _{12}\tau _2)]\\&+k_6\left[ a_2-a_2\beta _1\tau _1 -a_2\eta _{12}\tau _2-\frac{a_1(\beta _1\tau _1+\eta _{12}\tau _2)}{2}\right] \\&+k_7\left[ a_2\beta _1 \tau _1+a_2\eta _{12}\tau _2+\frac{a_1(\beta _1\tau _1+\eta _{12}\tau _2)}{2}\right] \\&+k_8\left[ a_4-a_4\beta _1\tau _1-a_4\eta _{12}\tau _2-\frac{a_3(\beta _1\tau _1+\eta _{12}\tau _2) +a_5(\beta _1\tau _1+\eta _{12}\tau _2)}{2}\right] \\&+k_9\frac{2a_4\beta _1\tau _1+2a_4\eta _{12}\tau _2 +a_3(\beta _1\tau _1+\eta _{12}\tau _2)+a_5(\beta _1\tau _1+\eta _{12}\tau _2)}{2}\\&+k_{10}\left[ \frac{(\beta _1+\eta _{12})(2-2\beta _1\tau _1-2\eta _{12}\tau _2)}{2} +\frac{(a_7-\beta _1-\eta _{12})(2\eta _{12}\tau _2+\beta _1\tau _1)}{2}\right. \\&\left. +\frac{(\beta _1\tau _1+\eta _{12}\tau _2)(a_6-a_8)}{2}\right] ,\\ \Lambda _4= & {} k_4(2a_8+a_8\beta _1\tau _1+a_8\eta _{12}\tau _2)-k_{10}\frac{a_8\beta _1\tau _1 +a_8\eta _{12}\tau _2}{2}. \end{aligned}$$

Appendix C

Derivation of \(\Gamma _{ij}, i, j=1, 2, 3, 4\).

$$\begin{aligned} \Gamma _{11}= & {} \frac{a_2}{a_6(\lambda _1-a_1)}\Lambda _{11}e^{\lambda _1t}-\frac{a_2}{a_6(\lambda _2-a_1)}\Lambda _{12}e^{\lambda _2t}+\frac{a_2}{a_6(\lambda _3-a_1)}\Lambda _{13}e^{\lambda _3t}\\&-\frac{a_2}{a_6(\lambda _4-a_1)}\Lambda _{14}e^{\lambda _4t},\\ \Gamma _{12}= & {} -a_2^2\Lambda _{21}e^{\lambda _1t}+a_2^2\Lambda _{22}e^{\lambda _2t}-a_2^2\Lambda _{23}e^{\lambda _3t}+a_2^2\Lambda _{24}e^{\lambda _4t},\\ \Gamma _{13}= & {} -\frac{a_2^2}{a_6}\Lambda _{31}e^{\lambda _1 t}+\frac{a_2^2}{a_6}\Lambda _{32}e^{\lambda _2 t}-\frac{a_2^2}{a_6}\Lambda _{33}e^{\lambda _3 t}+\frac{a_2^2}{a_6}\Lambda _{34}e^{\lambda _4 t},\\ \Gamma _{14}= & {} -\frac{a_2^2}{a_6}\Lambda _{41}e^{\lambda _1 t}+\frac{a_2^2}{a_6}\Lambda _{42}e^{\lambda _2 t}-\frac{a_2^2}{a_6}\Lambda _{43}e^{\lambda _3 t}+\frac{a_2^2}{a_6}\Lambda _{44}e^{\lambda _4 t},\\ \Gamma _{21}= & {} \frac{\beta _1-a_7+\eta _{12}+\lambda _1}{a_6^2}\Lambda _{11}e^{\lambda _1t} -\frac{\beta _1-a_7+\eta _{12}+\lambda _2}{a_6^2}\Lambda _{12}e^{\lambda _2t}\\&+\frac{\beta _1-a_7+\eta _{12}+\lambda _3}{a_6^2}\Lambda _{13}e^{\lambda _3t}-\frac{\beta _1-a_7+\eta _{12}+\lambda _4}{a_6^2}\Lambda _{14}e^{\lambda _4t},\\ \Gamma _{22}= & {} -\frac{a_2(\lambda _1-a_1)(\beta _1-a_7+\eta _{12}+\lambda _1)}{a_6} \Lambda _{21}e^{\lambda _1t}\\&+\frac{a_2(\lambda _2-a_1)(\beta _1-a_7+\eta _{12}+\lambda _2)}{a_6}\Lambda _{22}e^{\lambda _2t}\\&-\frac{a_2(\lambda _3-a_1) (\beta _1-a_7+\eta _{12}+\lambda _3)}{a_6}\Lambda _{23}e^{\lambda _3t}\\&+\frac{a_2(\lambda _4-a_1)(\beta _1-a_7+\eta _{12}+\lambda _4)}{a_6}\Lambda _{24}e^{\lambda _4t},\\ \Gamma _{23}= & {} -\frac{a_2 (\lambda _1-a_1)}{a_6^2}\Lambda _{31}e^{\lambda _1 t} +\frac{a_2 (\lambda _2-a_1)}{a_6^2}\Lambda _{32}e^{\lambda _2 t} -\frac{a_2 (\lambda _3-a_1)}{a_6^2}\Lambda _{33}e^{\lambda _3 t}\\&+\frac{a_2 (\lambda _4-a_1)}{a_6^2}\Lambda _{34}e^{\lambda _4 t},\\ \Gamma _{24}= & {} -\frac{a_2 (\lambda _1-a_1)(\beta _1-a_7+\eta _{12}+\lambda _1)}{a_6^2} \Lambda _{41}e^{\lambda _1 t}\\&+\frac{a_2 (\lambda _2-a_1)(\beta _1-a_7+\eta _{12} +\lambda _2)}{a_6^2}\Lambda _{42}e^{\lambda _2 t}\\&-\frac{a_2 (\lambda _3-a_1)(\beta _1-a_7+\eta _{12}+\lambda _3)}{a_6^2}\Lambda _{43 }e^{\lambda _3 t}\\&+\frac{a_2 (\lambda _4-a_1)(\beta _1-a_7+\eta _{12} +\lambda _4)}{a_6^2}\Lambda _{44}e^{\lambda _4 t},\\ \Gamma _{31}= & {} \frac{1}{a_6}\Lambda _{11}e^{\lambda _1t} -\frac{1}{a_6}\Lambda _{12}e^{\lambda _2t}+\frac{1}{a_6}\Lambda _{13}e^{\lambda _3t} -\frac{1}{a_6}\Lambda _{14}e^{\lambda _4t},\\ \Gamma _{32}= & {} -a_2(\lambda _1-a_1)\Lambda _{21}e^{\lambda _1t} +a_2(\lambda _2-a_1)\Lambda _{22}e^{\lambda _2t}-a_2(\lambda _3-a_1)\Lambda _{23}e^{\lambda _3t}\\&+a_2(\lambda _4-a_1)\Lambda _{24}e^{\lambda _4t},\\ \Gamma _{33}= & {} -\frac{a_2 (\lambda _1-a_1)}{a_6}\Lambda _{31}e^{\lambda _1 t} +\frac{a_2 (\lambda _2-a_1)}{a_6}\Lambda _{32}e^{\lambda _2 t} -\frac{a_2 (\lambda _3-a_1)}{a_6}\Lambda _{33}e^{\lambda _3 t}\\&+\frac{a_2 (\lambda _4-a_1)}{a_6}\Lambda _{34}e^{\lambda _4 t},\\ \Gamma _{34}= & {} -\frac{a_2 (\lambda _1-a_1)}{a_6}\Lambda _{41}e^{\lambda _1 t} +\frac{a_2 (\lambda _2-a_1)}{a_6}\Lambda _{42}e^{\lambda _2 t} -\frac{a_2 (\lambda _3-a_1)}{a_6}\Lambda _{43}e^{\lambda _3 t}\\&+\frac{a_2 (\lambda _4-a_1)}{a_6}\Lambda _{44}e^{\lambda _4 t},\\ \Gamma _{41}= & {} \frac{\beta _1+\eta _{12}}{a_6(\lambda _1-a_8)}\Lambda _{11}e^{\lambda _1t} -\frac{\beta _1+\eta _{12}}{a_6(\lambda _2-a_8)}\Lambda _{12}e^{\lambda _2t} +\frac{\beta _1+\eta _{12}}{a_6(\lambda _3-a_8)}\Lambda _{13}e^{\lambda _3t}\\&-\frac{\beta _1+\eta _{12}}{a_6(\lambda _4-a_8)}\Lambda _{14}e^{\lambda _4t},\\ \Gamma _{42}= & {} -\frac{a_2(\lambda _1-a_1)(\beta _1+\eta _{12})}{\lambda _1-a_8} \Lambda _{21}e^{\lambda _1t} +\frac{a_2(\lambda _2-a_1)(\beta _1+\eta _{12})}{\lambda _2-a_8}\Lambda _{22}e^{\lambda _2t}\\&-\frac{a_2(\lambda _3-a_1)(\beta _1+\eta _{12})}{\lambda _3-a_8}\Lambda _{23}e^{\lambda _3t} +\frac{a_2(\lambda _4-a_1)(\beta _1+\eta _{12})}{\lambda _4-a_8}\Lambda _{24}e^{\lambda _4t},\\ \Gamma _{43}= & {} -\frac{a_2 (\lambda _1-a_1)(\lambda _1-a_8)(\beta _1 +\eta _{12})}{a_6}\Lambda _{31}e^{\lambda _1 t} +\frac{a_2 (\lambda _2-a_1)(\lambda _2-a_8)(\beta _1+\eta _{12})}{a_6}\Lambda _{32}e^{\lambda _2 t}\\&-\frac{a_2 (\lambda _3-a_1)(\lambda _3-a_8)(\beta _1+\eta _{12})}{a_6}\Lambda _{33}e^{\lambda _3 t} +\frac{a_2 (\lambda _4-a_1)(\lambda _4-a_8)(\beta _1+\eta _{12})}{a_6}\Lambda _{34}e^{\lambda _4 t},\\ \Gamma _{44}= & {} -\frac{a_2 (\lambda _1-a_1)(\beta _1+\eta _{12})}{a_6 (\lambda _1-a_8)} \Lambda _{41}e^{\lambda _1 t}+\frac{a_2 (\lambda _2-a_1)(\beta _1+\eta _{12})}{a_6 (\lambda _2-a_8)} \Lambda _{42}e^{\lambda _2 t}\\&-\frac{a_2 (\lambda _3-a_1)(\beta _1+\eta _{12})}{a_6 (\lambda _3-a_8)}\Lambda _{43}e^{\lambda _3 t} +\frac{a_2 (\lambda _4-a_1)(\beta _1+\eta _{12})}{a_6 (\lambda _4-a_8)}\Lambda _{44}e^{\lambda _4 t},\\ \end{aligned}$$

and

$$\begin{aligned} \Lambda _{11}= & {} \frac{(\lambda _1-a_8)(\lambda _2-\lambda _3)(\lambda _2-\lambda _4)(\lambda _3-\lambda _4)}{(\beta _1+\eta _{12})^3},\\ \Lambda _{12}= & {} \frac{(\lambda _1-\lambda _3)(\lambda _1-\lambda _4)(\lambda _2-a_8)(\lambda _3-\lambda _4)}{(\beta _1+\eta _{12})^3},\\ \Lambda _{13}= & {} \frac{(\lambda _3-a_8)(\lambda _1-\lambda _2)(\lambda _1-\lambda _4)(\lambda _2-\lambda _4)}{(\beta _1+\eta _{12})^3},\\ \Lambda _{14}= & {} \frac{(\lambda _4-a_8)(\lambda _1-\lambda _2)(\lambda _1-\lambda _3)(\lambda _2-\lambda _3)}{(\beta _1+\eta _{12})^3},\\ \Lambda _{21}= & {} \frac{(a_1-a_8)(\lambda _1-a_8)(\lambda _2-\lambda _3)(\lambda _2-\lambda _4)(\lambda _3-\lambda _4)}{(\beta _1+\eta _{12})^3(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)},\\ \Lambda _{22}= & {} \frac{(a_1-a_8)(\lambda _2-a_8)(\lambda _1-\lambda _3)(\lambda _1-\lambda _4)(\lambda _3-\lambda _4)}{(\beta _1+\eta _{12})^3(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)},\\ \Lambda _{23}= & {} \frac{(a_1-a_8)(\lambda _3-a_8)(\lambda _1-\lambda _2)(\lambda _1-\lambda _4)(\lambda _2-\lambda _4)}{(\beta _1+\eta _{12})^3(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)},\\ \Lambda _{24}= & {} \frac{(a_1-a_8)(\lambda _4-a_8)(\lambda _1-\lambda _2)(\lambda _1-\lambda _3)(\lambda _2-\lambda _3)}{(\beta _1+\eta _{12})^3(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-1)},\\ \Lambda _{31}= & {} \frac{(a_1-a_8)(\lambda _1-a_8)(\lambda _2-\lambda _3)(\lambda _2-\lambda _4)(\lambda _3-\lambda _4)(a_1+a_7+a_8-\beta _1-\eta _{12}-\lambda _2-\lambda _3-\lambda _4)}{(\beta _1+\eta _{12})^3(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)},\\ \Lambda _{32}= & {} \frac{(a_1-a_8)(\lambda _2-a_8)(\lambda _1-\lambda _3)(\lambda _1-\lambda _4)(\lambda _3-\lambda _4)(a_1+a_7+a_8-\beta _1-\eta _{12}-\lambda _1-\lambda _3-\lambda _4)}{(\beta _1+\eta _{12})^3(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)},\\ \Lambda _{33}= & {} \frac{(a_1-a_8)(\lambda _3-a_8)(\lambda _1-\lambda _2)(\lambda _1-\lambda _4)(\lambda _2-\lambda _4)(a_1+a_7+a_8-\beta _1-\eta _{12}-\lambda _1-\lambda _2-\lambda _4)}{(\beta _1+\eta _{12})^3(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)},\\ \Lambda _{34}= & {} \frac{(a_1-a_8)(\lambda _4-a_8)(\lambda _1-\lambda _2)(\lambda _1-\lambda _3)(\lambda _2-\lambda _3)(a_1+a_7+a_8-\beta _1-\eta _{12}-\lambda _2-\lambda _3-\lambda _1)}{(\beta _1+\eta _{12})^3(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)},\\ \Lambda _{41}= & {} \frac{(\lambda _1-a_8)(\lambda _2-a_8)(\lambda _3-a_8)(\lambda _4-a_8)(\lambda _2-\lambda _3)(\lambda _2-\lambda _4)(\lambda _3-\lambda _4)}{(\beta _1+\eta _{12})^4(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)},\\ \Lambda _{42}= & {} \frac{(\lambda _1-a_8)(\lambda _2-a_8)(\lambda _3-a_8)(\lambda _4-a_8)(\lambda _1-\lambda _3)(\lambda _1-\lambda _4)(\lambda _3-\lambda _4)}{(\beta _1+\eta _{12})^4(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)},\\ \Lambda _{43}= & {} \frac{(\lambda _1-a_8)(\lambda _2-a_8)(\lambda _3-a_8)(\lambda _4-a_8)(\lambda _1-\lambda _2)(\lambda _1-\lambda _4)(\lambda _2-\lambda _4)}{(\beta _1+\eta _{12})^4(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)},\\ \Lambda _{44}= & {} \frac{(\lambda _1-a_8)(\lambda _2-a_8)(\lambda _3-a_8)(\lambda _4-a_8)(\lambda _1-\lambda _2)(\lambda _1-\lambda _3)(\lambda _2-\lambda _3)}{(\beta _1+\eta _{12})^4(\lambda _1-a_1)(\lambda _2-a_1)(\lambda _3-a_1)(\lambda _4-a_1)}.\\ \end{aligned}$$

Appendix D

Derivation of \(\sigma _{S}^2\), \(\sigma _{E}^2\), \(\sigma _{I}^2\), \(\sigma _{R}^2\).

$$\begin{aligned} \sigma _{S}^2= & {} <S^2(t)>-(<S(t)>)^2\\= & {} -\frac{1}{\Delta ^2}\left[ \left\{ \frac{a_2^2}{a_6^2(\lambda _1-a_1)^2}\Lambda _{11}^2+a_2^4\Lambda _{21}^2+\frac{a_2^4}{a_6^2}\Lambda _{31}^2+\frac{a_2^4}{a_6^2}\Lambda _{41}^2\right\} \frac{1-e^{2\lambda _1 t}}{2\lambda _1}\right. \\&+\left\{ \frac{a_2^2}{a_6^2(\lambda _2-a_1)^2}\Lambda _{12}^2+a_2^4\Lambda _{22}^2+\frac{a_2^4}{a_6^2}\Lambda _{32}^2+\frac{a_2^4}{a_6^2}\Lambda _{42}^2\right\} \frac{1-e^{2\lambda _2 t}}{2\lambda _2}\\&+\left\{ \frac{a_2^2}{a_6^2(\lambda _3-a_1)^2}\Lambda _{13}^2+a_2^4\Lambda _{23}^2+\frac{a_2^4}{a_6^2}\Lambda _{33}^2+\frac{a_2^4}{a_6^2}\Lambda _{43}^2\right\} \frac{1-e^{2\lambda _3 t}}{2\lambda _3}\\&+\left\{ \frac{a_2^2}{a_6^2(\lambda _4-a_1)^2}\Lambda _{14}^2+a_2^4\Lambda _{24}^2+\frac{a_2^4}{a_6^2}\Lambda _{34}^2+\frac{a_2^4}{a_6^2}\Lambda _{44}^2\right\} \frac{1-e^{2\lambda _4 t}}{2\lambda _4}\\&+2\frac{1-e^{\overline{\lambda _1+\lambda _2}t}}{\lambda _1+\lambda _2}\left\{ \frac{a_2^2}{a_6^2(\lambda _1-a_1)(\lambda _2-a_1)}\Lambda _{11}\Lambda _{12}+a_2^4\Lambda _{21}\Lambda _{22}+\frac{a_2^4}{a_6^2}\Lambda _{31}\Lambda _{32}+\frac{a_2^4}{a_6^2}\Lambda _{41}\Lambda _{42}\right\} \\&+2\frac{1-e^{\overline{\lambda _1+\lambda _3}t}}{\lambda _1+\lambda _3}\left\{ \frac{a_2^2}{a_6^2(\lambda _1-a_1)(\lambda _3-a_1)}\Lambda _{11}\Lambda _{13}+a_2^4\Lambda _{21}\Lambda _{23}+\frac{a_2^4}{a_6^2}\Lambda _{31}\Lambda _{33}+\frac{a_2^4}{a_6^2}\Lambda _{41}\Lambda _{43}\right\} \\&+2\frac{1-e^{\overline{\lambda _1+\lambda _4}t}}{\lambda _1+\lambda _4}\left\{ \frac{a_2^2}{a_6^2(\lambda _1-a_1)(\lambda _4-a_1)}\Lambda _{11}\Lambda _{14}+a_2^4\Lambda _{21}\Lambda _{24}+\frac{a_2^4}{a_6^2}\Lambda _{31}\Lambda _{34}+\frac{a_2^4}{a_6^2}\Lambda _{41}\Lambda _{44}\right\} \\&+2\frac{1-e^{\overline{\lambda _2+\lambda _3}t}}{\lambda _2+\lambda _3}\left\{ \frac{a_2^2}{a_6^2(\lambda _2-a_1)(\lambda _3-a_1)}\Lambda _{12}\Lambda _{13}+a_2^4\Lambda _{22}\Lambda _{23}+\frac{a_2^4}{a_6^2}\Lambda _{32}\Lambda _{33}+\frac{a_2^4}{a_6^2}\Lambda _{42}\Lambda _{43}\right\} \\&+2\frac{1-e^{\overline{\lambda _2+\lambda _4}t}}{\lambda _2+\lambda _4}\left\{ \frac{a_2^2}{a_6^2(\lambda _2-a_1)(\lambda _4-a_1)}\Lambda _{12}\Lambda _{14}+a_2^4\Lambda _{22}\Lambda _{24}+\frac{a_2^4}{a_6^2}\Lambda _{32}\Lambda _{34}+\frac{a_2^4}{a_6^2}\Lambda _{42}\Lambda _{44}\right\} \\&\left. +2\frac{1-e^{\overline{\lambda _3+\lambda _4}t}}{\lambda _3+\lambda _4}\left\{ \frac{a_2^2}{a_6^2(\lambda _3-a_1)(\lambda _4-a_1)}\Lambda _{13}\Lambda _{14}+a_2^4\Lambda _{23}\Lambda _{24}+\frac{a_2^4}{a_6^2}\Lambda _{33}\Lambda _{34}+\frac{a_2^4}{a_6^2}\Lambda _{43}\Lambda _{44}\right\} \right] , \end{aligned}$$
$$\begin{aligned} \sigma _{E}^2= & {} <E^2(t)>-(<E(t))>^2\\= & {} -\frac{1}{\Delta ^2}\left[ \left\{ \frac{(\beta _1-a_7+\eta _{12}+\lambda _1)^2}{a_6^4}\Lambda _{11}^2+\frac{a_2^2(\lambda _1-a_1)^2}{a_6^2}\Lambda _{21}^2+\frac{a_2^2(\lambda _1-a_1)^2}{a_6^4}\Lambda _{31}^2\right. \right. \\&\left. +\frac{a_2^2(\lambda _1-a_1)^2(\beta _1-a_7+\eta _{12}+\lambda _1)^2}{a_6^4}\Lambda _{41}^2\right\} \frac{1-e^{2\lambda _1t}}{2\lambda _1}\\&+\left\{ \frac{(\beta _1-a_7+\eta _{12}+\lambda _2)^2}{a_6^4}\Lambda _{12}^2+\frac{a_2^2(\lambda _2-a_1)^2(\beta _1-a_7+\eta _{12}+\lambda _2)^2}{a_6^2}\Lambda _{22}^2+\frac{a_2^2(\lambda _2-a_1)^2}{a_6^4}\Lambda _{32}^2\right. \\&\left. +\frac{a_2^2(\lambda _2-a_1)^2(\beta _1-a_7+\eta _{12}+\lambda _2)^2}{a_6^4}\Lambda _{42}^2\right\} \frac{1-e^{2\lambda _2t}}{2\lambda _2}\\&+\left\{ \frac{(\beta _1-a_7+\eta _{12}+\lambda _3)^2}{a_6^2}\Lambda _{13}^2+\frac{a_2^2(\lambda _3-a_1)^2(\beta _1-a_7+\eta _{12}+\lambda _3)^2}{a_6^2}\Lambda _{23}^2+\frac{a_2^2(\lambda _3-a_1)^2}{a_6^4}\Lambda _{33}^2\right. \\&\left. +\frac{a_2^2(\lambda _3-a_1)^2(\beta _1-a_7+\eta _{12}+\lambda _3)^2}{a_6^4}\Lambda _{43}^2\right\} \frac{1-e^{2\lambda _3t}}{2\lambda _3}\\&+\left\{ \frac{(\beta _1-a_7+\eta _{12}+\lambda _4)^2}{a_6^4}\Lambda _{14}^2+\frac{a_2^2(\lambda _4-a_1)^2(\beta _1-a_7+\eta _{12}+\lambda _4)^2}{a_6^2}\Lambda _{24}^2+\frac{a_2^2(\lambda _4-a_1)^2}{a_6^4}\Lambda _{34}^2\right. \\&\left. +\frac{a_2^2(\lambda _4-a_1)^2(\beta _1-a_7+\eta _{12}+\lambda _4)^2}{a_6^4}\Lambda _{44}^2\right\} \frac{1-e^{2\lambda _4t}}{2\lambda _4}\\&+2\frac{1-e^{\overline{\lambda _1+\lambda _2}t}}{\lambda _1+\lambda _2} \left\{ \frac{(\beta _1-a_7+\eta _{12}+\lambda _1)(\beta _1-a_7+\eta _{12}+\lambda _2)}{a_6^4} \Lambda _{11}\Lambda _{12}+\frac{a_2^2(\lambda _1-a_1)(\lambda _2-a_1)}{a_6^4}\Lambda _{31}\Lambda _{32}\right. \\&+\frac{a_2^2(\lambda _1-a_1)(\lambda _2-a_1)(\beta _1-a_7+\eta _{12}+\lambda _1) (\beta _1-a_7+\eta _{12}+\lambda _2)}{a_6^2}\Lambda _{21}\Lambda _{22}\\&\left. +\frac{a_2^2(\lambda _1-a_1)(\lambda _2-a_1)(\beta _1-a_7+\eta _{12}+\lambda _1) (\beta _1-a_7+\eta _{12}+\lambda _2)}{a_6^4}\Lambda _{41}\Lambda _{42}\right\} \\&+2\frac{1-e^{\overline{\lambda _1+\lambda _3}t}}{\lambda _1+\lambda _3} \left\{ \frac{(\beta _1-a_7+\eta _{12}+\lambda _1)(\beta _1-a_7+\eta _{12}+\lambda _3) }{a_6^4}\Lambda _{11}\Lambda _{13}+\frac{a_2^2(\lambda _1-a_1)(\lambda _3-a_1)}{a_6^4}\Lambda _{31}\Lambda _{33}\right. \\&+\frac{a_2^2(\lambda _1-a_1)(\lambda _3-a_1)(\beta _1-a_7+\eta _{12}+\lambda _1) (\beta _1-a_7+\eta _{12}+\lambda _3)}{a_6^2}\Lambda _{21}\Lambda _{23}\\&\left. +\frac{a_2^2(\lambda _1-a_1)(\lambda _3-a_1)(\beta _1-a_7+\eta _{12}+\lambda _1) (\beta _1-a_7+\eta _{12}+\lambda _3)}{a_6^4}\Lambda _{41}\Lambda _{43}\right\} \\&+2\frac{1-e^{\overline{\lambda _1+\lambda _4}t}}{\lambda _1+\lambda _4} \left\{ \frac{(\beta _1-a_7+\eta _{12}+\lambda _1)(\beta _1-a_7+\eta _{12} +\lambda _4)}{a_6^4}\Lambda _{11}\Lambda _{14}+\frac{a_2^2(\lambda _1-a_1) (\lambda _4-a_1)}{a_6^4}\Lambda _{31}\Lambda _{34}\right. \\&+\frac{a_2^2(\lambda _1-a_1)(\lambda _4-a_1)(\beta _1-a_7+\eta _{12} +\lambda _1)(\beta _1-a_7+\eta _{12}+\lambda _4)}{a_6^2}\Lambda _{21}\Lambda _{24}\\&\left. +\frac{a_2^2(\lambda _1-a_1)(\lambda _4-a_1)(\beta _1-a_7+\eta _{12} +\lambda _1)(\beta _1-a_7+\eta _{12}+\lambda _4)}{a_6^4}\Lambda _{41}\Lambda _{44}\right\} \\&+2\frac{1-e^{\overline{\lambda _2+\lambda _3}t}}{\lambda _2+\lambda _3} \left\{ \frac{(\beta _1-a_7+\eta _{12}+\lambda _2)(\beta _1-a_7+\eta _{12}+\lambda _3 )}{a_6^4}\Lambda _{12}\Lambda _{13}+\frac{a_2^2(\lambda _2-a_1) (\lambda _3-a_1)}{a_6^4}\Lambda _{32}\Lambda _{33}\right. \\&+\frac{a_2^2(\lambda _2-a_1)(\lambda _3-a_1)(\beta _1-a_7+\eta _{12} +\lambda _2)(\beta _1-a_7+\eta _{12}+\lambda _3)}{a_6^2}\Lambda _{22}\Lambda _{23}\\&\left. +\frac{a_2^2(\lambda _2-a_1)(\lambda _3-a_1)(\beta _1-a_7+\eta _{12} +\lambda _2)(\beta _1-a_7+\eta _{12}+\lambda _3)}{a_6^4}\Lambda _{42}\Lambda _{43}\right\} \\&+2\frac{1-e^{\overline{\lambda _2+\lambda _4}t}}{\lambda _2+\lambda _4} \left\{ \frac{(\beta _1-a_7+\eta _{12}+\lambda _2)(\beta _1-a_7+\eta _{12}+\lambda _4)}{a_6^4}\Lambda _{12}\Lambda _{14}+\frac{a_2^2(\lambda _2-a_1)(\lambda _4-a_1) }{a_6^4}\Lambda _{32}\Lambda _{34}\right. \\&+\frac{a_2^2(\lambda _2-a_1)(\lambda _4-a_1)(\beta _1-a_7+\eta _{12} +\lambda _2)(\beta _1-a_7+\eta _{12}+\lambda _4)}{a_6^2}\Lambda _{22}\Lambda _{24}\\&\left. +\frac{a_2^2(\lambda _2-a_1)(\lambda _4-a_1)(\beta _1-a_7+\eta _{12} +\lambda _2)(\beta _1-a_7+\eta _{12}+\lambda _4)}{a_6^4}\Lambda _{42}\Lambda _{44}\right\} \\&+2\frac{1-e^{\overline{\lambda _3+\lambda _4}t}}{\lambda _4+\lambda _3} \left\{ \frac{(\beta _1-a_7+\eta _{12}+\lambda _3)(\beta _1-a_7+\eta _{12} +\lambda _4)}{a_6^4}\Lambda _{13}\Lambda _{14}+\frac{a_2^2(\lambda _3-a_1) (\lambda _4-a_1)}{a_6^4}\Lambda _{33}\Lambda _{34}\right. \\&+\frac{a_2^2(\lambda _3-a_1)(\lambda _4-a_1)(\beta _1-a_7+\eta _{12} +\lambda _3)(\beta _1-a_7+\eta _{12}+\lambda _4)}{a_6^2}\Lambda _{23}\Lambda _{24}\\&\left. \left. +\frac{a_2^2(\lambda _3-a_1)(\lambda _4-a_1)(\beta _1-a_7+\eta _{12} +\lambda _3)(\beta _1-a_7+\eta _{12}+\lambda _4)}{a_6^4}\Lambda _{43}\Lambda _{44}\right\} \right] , \end{aligned}$$
$$\begin{aligned} \sigma _{I}^2= & {} <I^2(t)>-(<I(t)>)^2\\= & {} -\frac{1}{\Delta ^2}\left[ \left\{ \frac{1}{a_6^2}\Lambda _{11}^2 +a_2^2(\lambda _1-a_1)^2\Lambda _{21}^2+\frac{a_2^2(\lambda _1-a_1)^2}{a_6^2}\Lambda _{31}^2 +\frac{a_2(\lambda _1-a_1)^2}{a_6^2}\Lambda _{41}\right\} \frac{1-e^{2\lambda _1t}}{2\lambda _1} \right. \\&+\left\{ \frac{1}{a_6^2}\Lambda _{12}^2+a_2^2(\lambda _2-a_1)^2\Lambda _{22}^2 +\frac{a_2^2(\lambda _2-a_1)^2}{a_6^2}\Lambda _{32}^2 +\frac{a_2^2(\lambda _2-a_1)^2}{a_6^2}\Lambda _{42}^2\right\} \frac{1-e^{2\lambda _2t}}{2\lambda _2} \\&+\left\{ \frac{1}{a_6^2}\Lambda _{13}^2+a_2^2(\lambda _3-a_1)^2\Lambda _{23}^2 +\frac{a_2^2(\lambda _3-a_1)^2}{a_6^2}\Lambda _{33}^2+\frac{a_2^2(\lambda _3-a_1)^2 }{a_6^2}\Lambda _{43}^2\right\} \frac{1-e^{2\lambda _3t}}{2\lambda _3} \\&+\left\{ \frac{1}{a_6^2}\Lambda _{14}^2+a_2^2(\lambda _4-a_1)^2\Lambda _{24}^2 +\frac{a_2^2(\lambda _4-a_1)^2}{a_6^2}\Lambda _{34}^2+\frac{a_2^2(\lambda _4-a_1 )^2}{a_6^2}\Lambda _{44}^2\right\} \frac{1-e^{2\lambda _4t}}{2\lambda _4} \\&+2\frac{1-e^{\overline{\lambda _1+\lambda _2}t}}{\lambda _1+\lambda _2} \left\{ \frac{1}{a_6^2}\Lambda _{11}\Lambda _{12}+a_2^2(\lambda _1-a_1)(\lambda _2-a_1) \Lambda _{21}\Lambda _{22}+\frac{a_2^2(\lambda _1-a_1)(\lambda _2-a_1)}{a_6^2}\Lambda _{31}\Lambda _{32}\right. \\&\left. +\frac{a_2^2(\lambda _1-a_1)(\lambda _2-a_1)}{a_6^2}\Lambda _{41}\Lambda _{42}\right\} \\&+2\frac{1-e^{\overline{\lambda _1+\lambda _3}t}}{\lambda _1+\lambda _3 }\left\{ \frac{1}{a_6^2}\Lambda _{11}\Lambda _{13}+a_2^2(\lambda _1-a_1) (\lambda _3-a_1)\Lambda _{21}\Lambda _{23}+\frac{a_2^2(\lambda _1-a_1) (\lambda _3-a_1)}{a_6^2}\Lambda _{31}\Lambda _{33}\right. \\&\left. +\frac{a_2^2(\lambda _1-a_1)(\lambda _3-a_1)}{a_6^2}\Lambda _{41}\Lambda _{43}\right\} \\&+2\frac{1-e^{\overline{\lambda _1+\lambda _4}t}}{\lambda _1+\lambda _4} \left\{ \frac{1}{a_6^2}\Lambda _{11}\Lambda _{14}+a_2^2(\lambda _1-a_1)(\lambda _4-a_1) \Lambda _{21}\Lambda _{24}+\frac{a_2^2(\lambda _1-a_1)(\lambda _4-a_1)}{a_6^2}\Lambda _{31}\Lambda _{34}\right. \\&\left. +\frac{a_2^2(\lambda _1-a_1)(\lambda _4-a_1)}{a_6^2}\Lambda _{41}\Lambda _{44}\right\} \\&+2\frac{1-e^{\overline{\lambda _2+\lambda _3}t}}{\lambda _2+\lambda _3} \left\{ \frac{1}{a_6^2}\Lambda _{12}\Lambda _{13}+a_2^2(\lambda _2-a_1)(\lambda _3-a_1) \Lambda _{22}\Lambda _{23}+\frac{a_2^2(\lambda _2-a_1)(\lambda _3-a_1)}{a_6^2}\Lambda _{32}\Lambda _{33}\right. \\&\left. +\frac{a_2^2(\lambda _2-a_1)(\lambda _3-a_1)}{a_6^2}\Lambda _{42}\Lambda _{43}\right\} \\&+2\frac{1-e^{\overline{\lambda _2+\lambda _4}t}}{\lambda _2+\lambda _4} \left\{ \frac{1}{a_6^2}\Lambda _{12}\Lambda _{14}+a_2^2(\lambda _2-a_1)(\lambda _4-a_1) \Lambda _{22}\Lambda _{24}+\frac{a_2^2(\lambda _2-a_1)(\lambda _4-a_1)}{a_6^2}\Lambda _{32}\Lambda _{34}\right. \\&\left. +\frac{a_2^2(\lambda _2-a_1)(\lambda _4-a_1)}{a_6^2}\Lambda _{42}\Lambda _{44}\right\} \\&+2\frac{1-e^{\overline{\lambda _3+\lambda _4}t}}{\lambda _3+\lambda _4} \left\{ \frac{1}{a_6^2}\Lambda _{13}\Lambda _{14}+a_2^2(\lambda _3-a_1)(\lambda _4-a_1) \Lambda _{23}\Lambda _{24}+\frac{a_2^2(\lambda _3-a_1)(\lambda _4-a_1)}{a_6^2}\Lambda _{33}\Lambda _{34}\right. \\&\left. \left. +\frac{a_2^2(\lambda _3-a_1)(\lambda _4-a_1)}{a_6^2}\Lambda _{43}\Lambda _{44}\right\} \right] , \end{aligned}$$
$$\begin{aligned} \sigma _{R}^2= & {} <R^2(t)>-(<R(t)>)^2 \\= & {} -\frac{1}{\Delta ^2}\left[ \left\{ \frac{(\beta _1+\eta _{12})^2}{a_6^2(\lambda _1-a_8)^2} \Lambda _{11}^2+\frac{a_2^2(\lambda _1-a_1)^2(\beta _1+\eta _{12})^2}{(\lambda _1-a_8)^2}\Lambda _{21}^2\right. \right. \\&\left. +\frac{a_2^2(\lambda _1-a_1)^2(\lambda _1-a_8)^2(\beta _1+\eta _{12})^2}{a_6^2} \Lambda _{31}^2+\frac{a_2^2(\lambda _1-a_1)^2(\beta _1+\eta _{12})^2}{a_6^2 (\lambda _1-a_8)^2}\Lambda _{41}^2\right\} \frac{1-e^{2\lambda _1t}}{2\lambda _1} \\&+\left\{ \frac{(\beta _1+\eta _{12})^2}{a_6^2(\lambda _2-a_8)^2}\Lambda _{12}^2 +\frac{a_2^2(\lambda _2-a_1)^2(\beta _1+\eta _{12})^2}{(\lambda _2-a_8)^2}\Lambda _{22}^2\right. \\&\left. +\frac{a_2^2(\lambda _2-a_1)^2(\lambda _2-a_8)^2(\beta _1+\eta _{12})^2}{a_6^2}\Lambda _{32}^2+\frac{a_2^2(\lambda _2-a_1)^2(\beta _1+\eta _{12})^2}{a_6^2(\lambda _2-a_8)^2}\Lambda _{42}^2\right\} \frac{1-e^{2\lambda _2t}}{2\lambda _2} \\&+\left\{ \frac{(\beta _1+\eta _{12})^2}{a_6^2(\lambda _3-a_8)^2}\Lambda _{13}^2 +\frac{a_2^2(\lambda _3-a_1)^2(\beta _1+\eta _{12})^2}{(\lambda _3-a_8)^2}\Lambda _{23}^2\right. \\&\left. +\frac{a_2^2(\lambda _3-a_1)^2(\lambda _3-a_8)^2(\beta _1+\eta _{12})^2}{a_6^2}\Lambda _{33}^2+\frac{a_2^2(\lambda _3-a_1)^2(\beta _1+\eta _{12})^2}{a_6^2(\lambda _3-a_8)^2}\Lambda _{43}^2\right\} \frac{1-e^{2\lambda _3t}}{2\lambda _3} \\&+\left\{ \frac{(\beta _1+\eta _{12})^2}{a_6^2(\lambda _4-a_8)^2}\Lambda _{14}^2 +\frac{a_2^2(\lambda _4-a_1)^2(\beta _1+\eta _{12})^2}{(\lambda _4-a_8)^2}\Lambda _{24}^2\right. \\&\left. +\frac{a_2^2(\lambda _4-a_1)^2(\lambda _4-a_8)^2(\beta _1+\eta _{12})^2 }{a_6^2}\Lambda _{34}^2+\frac{a_2^2(\lambda _4-a_1)^2(\beta _1+\eta _{12} )^2}{a_6^2(\lambda _4-a_8)^2}\Lambda _{44}^2\right\} \frac{1-e^{2\lambda _4t}}{2\lambda _4} \\&+2\frac{1-e^{\overline{\lambda _1+\lambda _2}t}}{\lambda _1+\lambda _2} \left\{ \frac{(\beta _1+\eta _{12})^2}{a_6^2(\lambda _1-a_8)(\lambda _2-a_8)} \Lambda _{11}\Lambda _{12}+\frac{a_2^2(\lambda _1-a_1)(\lambda _2-a_1)(\beta _1 +\eta _{12})^2}{(\lambda _1-a_8)(\lambda _2-a_8)}\Lambda _{21}\Lambda _{22}\right. \\&+\frac{a_2^2(\lambda _1-a_1)(\lambda _1-a_8)(\lambda _2-a_1)(\lambda _2-a_8 )(\beta _1+\eta _{12})^2}{a_6^2}\Lambda _{31}\Lambda _{32} \\&\left. +\frac{a_2^2(\lambda _1-a_1)(\lambda _2-a_1)(\beta _1+\eta _{12})^2}{a_6^2 (\lambda _1-a_8)(\lambda _2-a_8)}\Lambda _{41}\Lambda _{42}\right\} \\&+2\frac{1-e^{\overline{\lambda _1+\lambda _3}t}}{\lambda _1+\lambda _3} \left\{ \frac{(\beta _1+\eta _{12})^2}{a_6^2(\lambda _1-a_8)(\lambda _3-a_8)} \Lambda _{11}\Lambda _{13}+\frac{a_2^2(\lambda _1-a_1)(\lambda _3-a_1)(\beta _1+ \eta _{12})^2}{(\lambda _1-a_8)(\lambda _3-a_8)}\Lambda _{21}\Lambda _{23}\right. \\&+\frac{a_2^2(\lambda _1-a_1)(\lambda _1-a_8)(\lambda _3-a_1)(\lambda _3-a_8) (\beta _1+\eta _{12})^2}{a_6^2}\Lambda _{31}\Lambda _{33} \\&\left. +\frac{a_2^2(\lambda _1-a_1)(\lambda _3-a_1)(\beta _1+\eta _{12})^2}{a_6^2 (\lambda _1-a_8)(\lambda _3-a_8)}\Lambda _{41}\Lambda _{43}\right\} \\&+2\frac{1-e^{\overline{\lambda _1+\lambda _4}t}}{\lambda _1+\lambda _4} \left\{ \frac{(\beta _1+\eta _{12})^2}{a_6^2(\lambda _1-a_8)(\lambda _4-a_8)} \Lambda _{11}\Lambda _{14}+\frac{a_2^2(\lambda _1-a_1)(\lambda _4-a_1)(\beta _1 +\eta _{12})^2}{(\lambda _1-a_8)(\lambda _4-a_8)}\Lambda _{21}\Lambda _{24}\right. \\&+\frac{a_2^2(\lambda _1-a_1)(\lambda _1-a_8)(\lambda _4-a_1)(\lambda _4-a_8) (\beta _1+\eta _{12})^2}{a_6^2}\Lambda _{31}\Lambda _{34} \\&\left. +\frac{a_2^2(\lambda _1-a_1)(\lambda _4-a_1)(\beta _1+\eta _{12})^2}{a_6^2 (\lambda _1-a_8)(\lambda _4-a_8)}\Lambda _{41}\Lambda _{44}\right\} \\&+2\frac{1-e^{\overline{\lambda _2+\lambda _3}t}}{\lambda _2+\lambda _3} \left\{ \frac{(\beta _1+\eta _{12})^2}{a_6^2(\lambda _2-a_8)(\lambda _3-a_8)}\Lambda _{12} \Lambda _{13}+\frac{a_2^2(\lambda _2-a_1)(\lambda _3-a_1)(\beta _1+\eta _{12})^2}{(\lambda _2-a_8)(\lambda _3-a_8)}\Lambda _{22}\Lambda _{23}\right. \\&+\frac{a_2^2(\lambda _2-a_1)(\lambda _2-a_8)(\lambda _3-a_1)(\lambda _3-a_8) (\beta _1+\eta _{12})^2}{a_6^2}\Lambda _{32}\Lambda _{33} \\&\left. +\frac{a_2^2(\lambda _2-a_1)(\lambda _3-a_1)(\beta _1+\eta _{12})^2}{a_6^2 (\lambda _2-a_8)(\lambda _3-a_8)}\Lambda _{42}\Lambda _{43}\right\} \\&+2\frac{1-e^{\overline{\lambda _2+\lambda _4}t}}{\lambda _2+\lambda _4} \left\{ \frac{(\beta _1+\eta _{12})^2}{a_6^2(\lambda _2-a_8)(\lambda _4-a_8)} \Lambda _{12}\Lambda _{14}+\frac{a_2^2(\lambda _2-a_1)(\lambda _4-a_1) (\beta _1+\eta _{12})^2}{(\lambda _2-a_8)(\lambda _4-a_8)}\Lambda _{22}\Lambda _{24}\right. \\&+\frac{a_2^2(\lambda _2-a_1)(\lambda _2-a_8)(\lambda _4-a_1) (\lambda _4-a_8)(\beta _1+\eta _{12})^2}{a_6^2}\Lambda _{32}\Lambda _{34} \\&\left. +\frac{a_2^2(\lambda _2-a_1)(\lambda _4-a_1)(\beta _1+\eta _{12})^2}{a_6^2(\lambda _2-a_8)(\lambda _4-a_8)}\Lambda _{42}\Lambda _{44}\right\} \\&+2\frac{1-e^{\overline{\lambda _3+\lambda _4}t}}{\lambda _3+\lambda _4} \left\{ \frac{(\beta _1+\eta _{12})^2}{a_6^2(\lambda _3-a_8)(\lambda _4-a_8) }\Lambda _{13}\Lambda _{14}+\frac{a_2^2(\lambda _3-a_1)(\lambda _4-a_1) (\beta _1+\eta _{12})^2}{(\lambda _3-a_8)(\lambda _4-a_8)}\Lambda _{23}\Lambda _{24}\right. \\&+\frac{a_2^2(\lambda _3-a_1)(\lambda _3-a_8)(\lambda _4-a_1) (\lambda _4-a_8)(\beta _1+\eta _{12})^2}{a_6^2}\Lambda _{33}\Lambda _{34} \\&\left. \left. +\frac{a_2^2(\lambda _3-a_1)(\lambda _4-a_1)(\beta _1+\eta _{12})^2}{a_6^2(\lambda _3-a_8)(\lambda _4-a_8)}\Lambda _{43}\Lambda _{44}\right\} \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Jana, D. & Maitra, S. Study of a Multi-delayed SEIR Epidemic Model with Immunity Period and Treatment Function in Deterministic and Stochastic Environment. Differ Equ Dyn Syst 32, 221–251 (2024). https://doi.org/10.1007/s12591-021-00568-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-021-00568-6

Keywords

Navigation