Skip to main content
Log in

Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

According to Vening Meinesz-Moritz (VMM) global inverse isostatic problem, either the Moho density contrast (crust-mantle density contrast) or the Moho geometry can be estimated by solving a non-linear Fredholm integral equation of the first kind. Here solutions to the two Moho parameters are presented by combining the global geopotential model (GOCO-03S), topography (DTM2006) and a seismic crust model, the latter being the recent digital global crustal model (CRUST1.0) with a resolution of 1º×1º. The numerical results show that the estimated Moho density contrast varies from 21 to 637 kg/m3, with a global average of 321 kg/m3, and the estimated Moho depth varies from 6 to 86 km with a global average of 24 km. Comparing the Moho density contrasts estimated using our leastsquares method and those derived by the CRUST1.0, CRUST2.0, and PREM models shows that our estimate agrees fairly well with CRUST1.0 model and rather poor with other models. The estimated Moho depths by our least-squares method and the CRUST1.0 model agree to 4.8 km in RMS and with the GEMMA1.0 based model to 6.3 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amante, C., Eakins, B. W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA, Technical Memorandum, NESDIS, NGDC-24. 19

    Google Scholar 

  • Bagherbandi, M., 2011. An Isostatic Earth Crustal Model and Its Application: [Dissertation]. Royal of Institute of Technology, Stockholm. 65–72

    Google Scholar 

  • Bagherbandi, M., Sjöberg, L. E., 2012. Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics of the Earth and Planetary Interiors, 200/201: 37–44. doi:10.1016/j.pepi.2012.04.001

    Article  Google Scholar 

  • Bagherbandi, M., Sjöberg, L. E., 2013. Improving Gravimetric-Isostatic Models of Crustal Depth by Correcting for Non-Isostatic Effects and Using CRUST2.0. Earth-Science Reviews, 117: 29–39. doi:10.1016/j.earscirev.2012.12.002

    Article  Google Scholar 

  • Bagherbandi, M., Tenzer, R., Sjöberg, L. E., et al., 2013. Improved Global Crustal Thickness Modeling Based on the VMM Isostatic Model and Non-Isostatic Gravity Correction. Journal of Geodynamics, 66: 25–37. doi:10.1016/j.jog.2013.01.002

    Article  Google Scholar 

  • Bassin, C., Laske, G., Masters, T. G., 2000. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 81: F897

    Google Scholar 

  • Bouman, J., Ebbing, J., Meekes, S., et al., 2015. GOCE Gravity Gradient Data for Lithospheric Modeling. International Journal of Applied Earth Observation and Geoinformation, 35: 16–30. doi:10.1016/j.jag.2013.11.001

    Article  Google Scholar 

  • Cadek, O., Martinec, Z., 1991. Spherical Harmonic Expansion of the Earth’s Crustal Thickness up to Degree and Order 30. Studia Geophysica et Geodaetica, 35(3): 151–165. doi:10.1007/bf01614063

    Article  Google Scholar 

  • Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. doi:10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  • Heiskanen, W. A., Moritz, H., 1967. Physical Geodesy. W. H. Freeman, New York. 130–133

    Google Scholar 

  • Laske, G., Masters, G., Reif, C., 2000. A New Global Crustal Model at 2×2 Degrees (CRUST2.0). http://igppweb.ucsd.edu/~gabi/crust2.html

    Google Scholar 

  • Laske, G., Masters, G., Ma, Z., et al., 2013. A New Global Crustal Model at 1×1 Degrees (CRUST1.0), http://igppweb.ucsd.edu/~gabi/crust1.html

    Google Scholar 

  • Lebedev, S., Adam, J. M. C., Meier, T., 2013. Mapping the Moho with Seismic Surface Waves: A Review, Resolution Analysis, and Recommended Inversion Strategies. Tectonophysics, 609: 377–394. doi:10.1016/j.tecto.2012.12.030

    Article  Google Scholar 

  • Mayer-Guerr, T., Rieser, D., Höck, E., et al., 2012. The New Combined Satellite only Model GOCO03s. Abstract, GGHS2012, Venice

    Google Scholar 

  • Meier, U., Curtis, A., Trampert, J., 2007. Global Crustal Thickness from Neural Network Inversion of Surface Wave Data. Geophysical Journal International, 169(2): 706–722. doi:10.1111/j.1365-246x.2007.03373.x

    Article  Google Scholar 

  • Moritz, H., 1990. The Figure of the Earth. H. Wichmann, Karlsruhe

    Google Scholar 

  • Moritz, H., 2000. Geodetic Reference System 1980. J. Geod., 74: 128–162

    Article  Google Scholar 

  • Pasyanos, M., Masters, G., Laske, G., et al., 2012. Litho1.0—An Updated Crust and Lithospheric Model of the Earth Developed Using Multiple Data Constraints. Fall Meeting, AGU, San Francisco. Dec. 3–7, 2012

    Google Scholar 

  • Pavlis, N. A., Simon, A. H., Kenyon, S. C., et al.., 2012. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117: B04406

    Article  Google Scholar 

  • Pavlis, N. K., Saleh, J., 2005. Error Propagation with Geographic Specificity for very High Degree Geopotential Models. International Association of Geodesy Symposia, 149–154. doi:10.1007/3-540-26932-0_26

    Google Scholar 

  • Reguzzoni, M., Sampietro, D., 2015. GEMMA: An Earth Crustal Model Based on GOCE Satellite Data. International Journal of Applied Earth Observation and Geoinformation, 35: 31–43. doi:10.1016/j.jag.2014.04.002

    Article  Google Scholar 

  • Reguzzoni, M., Sampietro, D., Sanso, F., 2013. Global Moho from the Combination of the CRUST2.0 Model and GOCE Data. Geophysical Journal International, 195(1): 222–237. doi:10.1093/gji/ggt247

    Article  Google Scholar 

  • Sampietro, D., Reguzzoni, M., Braitenberg, C., 2013. The GOCE Estimated Moho beneath the Tibetan Plateau and Himalaya. International Association of Geodesy Symposia, 22: 391–397. doi:10.1007/978-3-642-37222-3_52

    Google Scholar 

  • Shapiro, N. M., Ritzwoller, M. H., 2002. Monte-Carlo Inversion for a Global Shear-Velocity Model of the Crust and Upper Mantle. Geophysical Journal International, 151(1): 88–105. doi:10.1046/j.1365-246x.2002.01742.x

    Article  Google Scholar 

  • Sjöberg, L. E., 2009. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophysical Journal International, 179(3): 1527–1536. doi:10.1111/j.1365-246x.2009.04397.x

    Article  Google Scholar 

  • Sjöberg, L., Bagherbandi, M., 2011. A Method of Estimating the Moho Density Contrast with a Tentative Application of EGM08 and CRUST2.0. Acta Geophysica, 59(3): 502–525. doi:10.2478/s11600-011-0004-6

    Article  Google Scholar 

  • Tenzer, R., Chen, W., Tsoulis, D., et al., 2014. Analysis of the Refined CRUST1.0 Crustal Model and Its Gravity Field. Surveys in Geophysics, 36(1): 139–165

    Article  Google Scholar 

  • van der Pluijm, B. A., Marshak, S., 2004. Earth Structure: An Introduction to Structural Geology and Tectonics. 2nd Ed. W. W. Norton, New York

    Google Scholar 

  • Vening Meinesz, F. A., 1931. Une Nouvelle Méthode Pour La Réduction Isostatique Régionale de L’intensité de La Pesanteur. Bulletin Géodésique, 29(1): 33–51. doi:10.1007/bf03030038 (in French)

    Article  Google Scholar 

  • Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere. Cambridge, New York. 458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Abrehdary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrehdary, M., Sjöberg, L.E. & Bagherbandi, M. Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model. J. Earth Sci. 26, 607–616 (2015). https://doi.org/10.1007/s12583-015-0571-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-015-0571-6

Keywords

Navigation