Skip to main content
Log in

Monitoring and modeling the effects of groundwater flow on arsenic transport in Datong Basin

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Although arsenic-contaminated groundwater in the Datong Basin has been studied for more than 10 years, little has been known about the complex patterns of solute transport in the aquifer systems. Field monitoring and transient 3D unsaturated groundwater flow modeling studies were carried out on the riparian zone of the Sanggan River at the Datong Basin, northern China, to better understand the effects of groundwater flow on As mobilization and transport. The results indicate that irrigation is the primary factor in determining the groundwater flow paths. Irrigation can not only increase groundwater level and reduce horizontal groundwater velocity and thereby accelerate vertical and horizontal groundwater exchange among sand, silt and clay formations, but also change the HS concentration, redox conditions of the shallow groundwater. Results of net groundwater flux estimation suggest that vertical infiltration is likely the primary control of As transport in the vadose zone, while horizontal water exchange is dominant in controlling As migration within the sand aquifers. Recharge water, including irrigation return water and flushed saltwater, travels downward from the ground surface to the aquifer and then nearly horizontally across the sand aquifer. The maximum value of As enriched in the riparian zone is roughly estimated to be 1 706.2 mg·d−1 for a horizontal water exchange of 8.98 m3·d−1 close to the river and an As concentration of 190 μg·L−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Aziz, Z., van Geen, A., Stute, M., et al., 2008. Impact of Local Recharge on Arsenic Concentrations in Shallow Aquifers Inferred from the Electromagnetic Conductivity of Soils in Araihazar, Bangladesh. Water Resources Research, 44(7): W07416, doi:10.1029/2007/WR006000

    Article  Google Scholar 

  • Benner, S. G., Polizzotto, M. L., Kocar, B. D., et al., 2008. Groundwater Flow in an Arsenic-Contaminated Aquifer, Mekong Delta, Cambodia. Applied Geochemistry, 23(11): 3072–3087, doi:10.1016/j.apgeochem.2008.06.013

    Article  Google Scholar 

  • Berg, M., Stengel, C., Trang, P. T. K., et al., 2007. Magnitude of Arsenic Pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment, 372(2): 413–425, doi:10.1016/j.scitotenv.2006.09.010

    Article  Google Scholar 

  • BGS and DPHE, 2001. Arsenic Contamination of Groundwater in Bangladesh. In: Kinniburgh, D. G., Smedley, P. L., eds., Final Report BGS Technical Report WC/00/19, British Geological Survey, Keyworth, U.K.

    Google Scholar 

  • Charlet, L., Polya, D. A., 2006. Arsenic in Shallow, Reducing Groundwaters in Southern Aisa: An Environmental Health Disaster. Elements, 2(2): 91–96

    Article  Google Scholar 

  • Dong, S. G., Tang, Z. H., Liu, B. W., et al., 2008. Numerical Simulation for the Groundwater in Datong Basin and Evaluation of the Optimization of Water Resources. Geotechnical Investigation & Surveying, 3: 30–35 (in Chinese with English Abstract)

    Google Scholar 

  • Duan, M. Y., Xie, Z. M., Wang, Y. X., et al., 2009. Microcosm Studies on Iron and Arsenic Mobilization from Aquifer Sediments under Different Conditions of Microbial Activity and Carbon Source. Environmental Geology, 57(5): 997–1003, doi:10.1007/s00254-008-1384-z

    Article  Google Scholar 

  • Guo, H. M., Wang, Y. X., Shpeizer, G. M., et al., 2003. Natural Occurrence of Arsenic in Shallow Groundwater, Shanyin, Datong Basin, China. Journal of Environmental Science and Health Part A-Toxic/Hazard Substances & Environmental Engineering, 38(11): 2565–2580, doi:10.1018/ESE-120024447

    Google Scholar 

  • Guo, H. M., Wang, Y. X., 2004. Hydrogeochemical Processes in Shallow Quaternary Aquifers from the Northern Part of the Datong Basin, China. Applied Geochemistry, 19(1): 19–27

    Article  Google Scholar 

  • Guo, H. M., Zhang, Y., Jia, Y. F., et al., 2013. Dynamic Behaviors of Water Levels and Arsenic Concentration in Shallow Groundwater from the Hetao Basin, Inner Mongolia. Journal of Geochemical Exploration, 135: 130–140

    Article  Google Scholar 

  • Farooqi, A., Masuda, H., Kusakabe, M., et al., 2007. Distribution of Highly Arsenic and Fluoride Contaminated Groundwater from East Punjab, Pakistan, and the Controlling Role of Anthropogenic Pollutes in the Natural Hydrological Cycle. Geochemical Journal, 41(4): 213–234

    Article  Google Scholar 

  • Fetter, C. W., 2001. Applied Hydrogeology. Prentice-Hall, New Jersey. 75–85

    Google Scholar 

  • Han, S., Zhang, F., Zhang, H., et al., 2013. Spatial and Temporal Patterns of Groundwater Arsenic in Shallow and Deep Groundwater of Yinchuan Plain, China. Journal of Geochemical Exploration, 135: 71–78, doi:org/10.1016/j.gexplo.2012.11.005

    Article  Google Scholar 

  • Harvey, C. E., Ashfaque, K. N., Yu, W., et al., 2006. Groundwater Dynamics and Arsenic Contamination in Bangladesh. Chemical Geology, 228(1): 112–136, doi:10.1016/j.chemgeo.2005.11.025

    Article  Google Scholar 

  • Horneman, A., van Geen, A., Kent, D. V., et al., 2004. Arsnenic Mobilization in Bangladesh Groundwater Decoupled from Dissolution of Iron Oxyhydroxides, Part 1: Evidence from Borehole Cuttings. Geochimica et Cosmochima Acta, 68: 3459–3473

    Article  Google Scholar 

  • Islam, F. S., Gault, A. G., Boothman, C., et al., 2004. Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments. Nature, 430(6995): 68–71, doi:10.1038/nature02638

    Article  Google Scholar 

  • Kirk, M. F., Holm, T. R., Park, J., et al., 2004. Bacterial Sulfate Reduction Limits Natural Arsenic Contamination in Groundwater. Geology, 32(1): 953–956, doi:1130/G20842.1

    Article  Google Scholar 

  • Kinniburgh, D. G., Smedley, P. L., 2001. Arsenic Contamination of Groundwater in Bangladesh. In: Kinniburgh, D. G., Smedley, P. L., eds., Final Report BGS Technical Report WC/00/19, British Geological Survey, Keyworth, U.K.

    Google Scholar 

  • Klump, S., Kipfer, R., Cirpka, O. A., et al., 2006. Groundwater Dynamics and Arsenic Mobilization in Bangladesh Assessed Using Noble Gases and Tritium. Environmental Science & Technology, 40(1): 243–250, doi:10.1012/es051284w

    Article  Google Scholar 

  • Konikow, L. F., Neuzil, C. E., 2007. A Method to Estimate Groundwater Depletion from Confining Layers. Water Resources Research, 43(7): W07417, doi:10.1029/2006WR005597

    Article  Google Scholar 

  • Li, J., Wang, Z. H., Cheng, X. T., et al., 2005. Investigation of the Epidemiology of Endemic Arsenism in Ying County of Shanxi Province and the Content Relationship between Water Fluoride and Water Arsenic in Aquatic Environment. Chinese Journal of Endemiology, 24(2): 183–185 (in Chinese with English Abstract)

    Google Scholar 

  • Lowers, H. A., Breit, G. N., Foster, A. L., et al., 2007. Arsenic Incorporation into Authigenic Pyrite, Bengal Basin Sediment, Bangladesh. Geochemica et Cosmochimica Acta, 71(11): 2699–2717, doi:10.1016/j.gca.2007.03.022

    Article  Google Scholar 

  • Mandal, B. K., Chowdhury, T. R., Samanta, G., et al., 1996. Arsenic in Groundwater in Seven Districts of West Bengal, India: the Biggest Arsenic Calamity in the World. Current Science, 70(11): 976–986

    Google Scholar 

  • Masuda, H., Mitamura, M., Farooqi, A. M., et al., 2010. Geologic Structure and Geochemical Characteristics of Sediment of Fluoride and Arsenic Contaminated Groundwater Aquifer in Kalalanwala and Its Vicinity, Punjab, Pakistan. Geochemical Journal, 44(6): 489–505

    Article  Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., et al., 2004. Natural Organic Matter in Sedimentary Basins and Its Relation to Arsenic in Anoxic Ground Water: The Example of West Bengal and Its Worldwide Implications. Applied Geochemistry, 19(8): 1255–1293, doi:10.1016/j.apgeochem.2004.02.001

    Article  Google Scholar 

  • McDonald, M. G., Harbaugh, A. W., 1988. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model. USGS, Techniques of Water-Resources Investigations 34 (Book 6), 586 (Chapter A1)

    Google Scholar 

  • Nakaya, S., Natsume, H., Masuda, H., et al., 2011. Effect of Groundwater Flow on Forming Arsenic Contaminated Groundwater in Sonargaon, Bangladesh. Journal of Hydrology, 409(3–4): 724–736, doi:10.1016/j.jhydrol.2011.09.006

    Article  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Burgess, W. G., et al., 1998. Arsenic Poisoning of Bangladesh Groundwater. Nature, 395(6700): 338–338

    Article  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., et al., 2000. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403–413

    Article  Google Scholar 

  • Pei, H. H., Liang, S. X., Ning, L. Y., 2005. A Discussion of the Enrichment and Formation of Arsenic in Groundwater in Datong Basin. Hydrogeology & Engineering Geology, 32(4): 65–69 (in Chinese with English Abstract)

    Google Scholar 

  • Peters, S. C., Blum, J. D., 2003. The Source and Transport of Arsenic in a Bedrock Aquifer, New Hampshire, USA. Applied Geochemistry, 18(11): 1773–1787, doi:10.1016/S0883-2927(03)00109-4

    Article  Google Scholar 

  • Postma, D., Larsen, F., Hue, N. T. M., et al., 2007. Arsenic in Groundwater of the Red River Flood Plain, Vietnam: Controlling Geochemical Processes and Reactive Transport Modeling. Geochemica et Cosmochimica Acta, 71(21): 5054–5071, doi:10.1016/j.gca.2007.08.020

    Article  Google Scholar 

  • Schreiber, M. E., Simo, J. A., Freiberg, P. G., 2000. Stratigraphic and Geochemical Controls on Naturally Occurring Arsenic in Groundwater, Eastern Wisconsin, USA. Hydrogeology Journal, 8(2): 161–176, doi:10.1007/PL00021535

    Article  Google Scholar 

  • Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behavior and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517–568

    Article  Google Scholar 

  • Smedley, P. L., Zhang, M., Zhang, G., et al., 2003. Mobilisation of Arsenic and Other Trace Elements in Fluviolacustrine Aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 18(9): 1453–1477, doi:10.1016/S0883-2927(03)00062-3

    Article  Google Scholar 

  • Smith, A. H., Lingas, E. Q., Rahamn, M., 2000. Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. Bull. of the World Health Organization, 78(9): 1093–1103, doi:ogr/10.1590/S0042-96862000000900005

    Google Scholar 

  • Stigter, T. Y., Carvalho Dill, A. M. M., Ribeiro, L., et al., 2006. Impact of the Shift from Groundwater to Surface Water Irrigation on Aquifer Dynamics and Hydrochemistry in A Semi-Arid Region in the South of Portugal. Agricultural Water Management, 85(1–2): 121–132, 10.1016/j.agwat.2006.04.004

    Article  Google Scholar 

  • Stute, M., Zheng, Y., Schlosser, P., et al., 2007. Hydrological Control of As Concentrations in Bangladesh Groundwater. Water Resources Research, 43(9), doi:10.1029/2005WR004499

    Google Scholar 

  • Thangarajan, M., Linn, F., Uhl, V., et al., 1999. Modeling An Inland Delta Aquifer System to Evolve Pre-Development Management Schemes: A Case Study Upper Thamalakane River Valley, Botswana, Southern Africa. Environmental Geology, 38(4): 285–295

    Article  Google Scholar 

  • ven Geen, A., Zheng, Y., Stute, M., et al., 2003. Comments on “Arsenic Mobility and Groundwater Extraction in Bangladesh” (II). Science, 300(5619): 584c–584c, doi:10.1126/science.1081057

    Article  Google Scholar 

  • Wang, Y. X., Shpeyzer, G., 2000. Hydrogeochemistry of Mineral Waters from Rrift Systems on the East Asia Continent: Case Studies in Shanxi and Baikal. China Enviromental Science Press, Beijing (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Y. X., Shavartsev, S. L., Su, C. L., 2009. Genesis of Arsenic/Fluoride-Enriched Soda Water: A Case Study at Datong, Northern China. Applied Geochemistry, 24(4): 641–649, doi:10.1016/j.apgeochem.2008.12.015

    Article  Google Scholar 

  • Xie, X. J., Wang, Y. X., Su, C. L., et al., 2008. Arsenic Mobilization in Shallow Aquifers of Datong Basin: Hydrochemical and Mineralogical Evidences. Journal of Geochemical Exploration, 98(3): 107–115, doi:10.1016/j.gexplo.2008.01.002

    Article  Google Scholar 

  • Xie, X. J., Ellis, A., Wang, Y. X., et al., 2009. Geochemsitry of Redox-Sensitive Elements and Sulfur Isotopes in the Haigh Arsenic Groundwater System of Datong Basin, China. Science of the Total Environment, 407(12): 3823–3835, doi:10.1016/j.scitotenv.2009.01.041

    Article  Google Scholar 

  • Xie, X. J., Wang, Y. X., Li, J. X., et al., 2012a. Occurrence of High Arsenic Groundwater at the Datong and Huhhot Basin, Northern China: Hydrochemical and Isotopic Investigation. Fresenius Environmental Bulletin, 21(4): 819–829

    Google Scholar 

  • Xie, X. J., Wang, Y. X., Su, C. L., et al., 2012b. Influence of Irrigation Practices on Arsenic Mobilization: Evidence from Isotope Composition and Cl/Br Ratios in Groundwater from Datong Basin, Northern China. Journal of Hydrology, 424: 37–47, doi:10.1016/j.jhydrol.2011.12.017

    Article  Google Scholar 

  • Yu, G. Q., Sun, D. J., Zheng, Y., 2007. Health Effects of Exposure to Natural Arsenic in Groundwater and Coal in China: An Overview of Occurrence. Environmental Health Perspectives, 115(4): 636–642, doi:10.1289/ehp.9268

    Article  Google Scholar 

  • Zhang, J. G., Zhao, H. J., 1987. Water Resource Management in Shanxi Province. Ground Water, 4: 232–234 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Wang, Y., Ma, R. et al. Monitoring and modeling the effects of groundwater flow on arsenic transport in Datong Basin. J. Earth Sci. 25, 386–396 (2014). https://doi.org/10.1007/s12583-014-0421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-014-0421-y

Key Words

Navigation