Skip to main content
Log in

Active source tomography in northwestern Xinjiang, China: Implication for mineral distribution

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk (喀拉通克) region. Data were acquired in 2009 by a denser array in deploying a transportable seismometer with 4.5 Hz vertical geophone. All the P-wave arrival times are picked automatically with Akaike information criterion, and then checked manmachine interactively by short-receiver geometry. The database for local active-source tomographic inversion involves 4 241 P-wave arrival time readings from 96 shots and three quarry blasts. Checkerboard tests aimed at checking the reliability of the obtained velocity models are presented. The resulting V p distribution slices show a complicated 3-D structure beneath this area and offer a better understanding of three well-defined mineral deposits. Near the surface we observe a series of zones with slightly high-velocity which probably reflect potential deposits. Based on features of metallic ores we attempt to delimit their distributions and stretched directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Akaike, H., 1974. Markovian Representation of Stochastic Processes and Its Application to the Analysis of Autoregressive Moving Average Process. Ann. Inst. Stat. Math., 26(1): 363–387

    Article  Google Scholar 

  • Bais, G., Bruno, P. P. G., Di-Fiore, V., et al., 2003. Characterization of Shallow Volcanoclastic Deposits by Turning Ray Seismic Tomography: An Application to the Naples Urban Area. J. Appl. Geophys., 52(1): 11–21

    Article  Google Scholar 

  • Behm, M., 2009. 3-D Modelling of the Crustal S-Wave Velocity Structure from Active Source Data: Application to the Eastern Alps and the Bohemian Massif. Geophys. J. Int., 179(1): 265–278

    Article  Google Scholar 

  • Cai, X. L., Cao, J. M., Zhu, J. S., 2008. Lithospheric and Asthenospheric Structures of the Koktokay of Xinjiang to Jianyang of Sichuan Geoscience Transect. Geology in China, 35(3): 375–391 (in Chinese with English Abstract)

    Google Scholar 

  • Clark, S. A., Zelt, C. A., Magnani, M. B., et al., 2008. Characterizing the Caribbean-South American Plate Boundary at 64°W Using Wide-Angle Seismic Data. J. Geophys. Res., 113(B7): B7401

    Article  Google Scholar 

  • Evangelidis, C. P., Minshull, T. A., Henstock, T. J., 2004. Three-Dimensional Crustal Structure of Ascension Island from Active Source Seismic Tomography. Geophys. J. Int., 159(1): 311–325

    Article  Google Scholar 

  • Feng, R., Zhu, J. S., Ding, Y. Y., et al., 1981. Using Surface Wave to Study the Crust Structure of China. Journal of Seismology, 2(3): 345–350 (in Chinese)

    Google Scholar 

  • Friedel, M. J., Scott, D. F., Williams, T. J., 1997. Temporal Imaging of Mine-Induced Stress Change Using Seismic Tomography. Eng. Geol., 46(2): 131–141

    Article  Google Scholar 

  • Hearn, T. M., Ni, J. F., 1994. Pn Velocities beneath Continental Collision Zones: The Turkish-Iranian Plateau. Geophys. J. Int., 117(2): 273–283

    Article  Google Scholar 

  • Heincke, B., Maurer, H., Green, A. G., et al., 2006. Characterizing an Unstable Mountain Slope Using Shallow 2D and 3D Seismic Tomography. Geophysics, 71(6): B241–B256

    Article  Google Scholar 

  • Kanli, A. I., 2009. Initial Velocity Model Construction of Seismic Tomography in Near-Surface Applications. J. Appl. Geophys., 67(1): 52–62

    Article  Google Scholar 

  • Karabulut, H., Ozalaybey, S., Taymaz, T., et al., 2003. A Tomographic Image of the Shallow Crustal Structure in the Eastern Marmara. Geophys. Res. Lett., 30(24): 2277

    Article  Google Scholar 

  • Koulakov, I., 2009. LOTOS Code for Local Earthquake Tomographic Inversion: Benchmarks for Testing Tomographic Algorithms. Bull. Seismol. Soc. Am., 99(1): 194–214

    Article  Google Scholar 

  • Koulakov, I., Jakovlev, A., Luehr, B. G., 2009. Anisotropic Structure beneath Central Java from Local Earthquake Tomography. Geochem., Geophys., Geosys., 10: Q02011

    Article  Google Scholar 

  • Li, H. O., Jiang, M., Wang, Y. J., et al., 2006. Image of Crust and Upper Mantle Structure along the Array from Fuyun to Kuerle by P-to-S Converted Waves. Acta Geologica Sinica, 80(1): 135–141 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Li, Q., Liu, R. F., Du, A. L., 1994. Seismic Tomography of Xinjiang and Adjacent Region. Chinese Chinese J. Geophys., 37(3): 311–320 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, F. T., Qu, K. X., Wu, H., et al., 1989. The Tomography of Chinese Continent and Adjacent Area. Chinese J. Geophys., 32(3): 281–291 (in Chinese with English Abstract)

    Google Scholar 

  • Malinowski, M., Operto, S., 2006. Advantages of the Full-Waveform Inversion: Real Data Example from the Polish Basin. EOS Trans. AGU, 87(52): S43B–1385

    Google Scholar 

  • Maxwell, S. C., Young, R. P., 1992. Sequential Velocity Imaging and Microseismic Monitoring of Mining-Induced Stress Change. Pure Appl. Geophys., 139: 421–447

    Article  Google Scholar 

  • Nielsen, C., Thybo, H., 2009. No Moho Uplift below the Baikal Rift Zone: Evidence from a Seismic Refraction Profile across Southern Lake Baikal. J. Geophys. Res., 114: B08306

    Article  Google Scholar 

  • Nolet, G., 1993. Solving Large Linearized Tomographic Problems. In: Iyer, H. M., Hirahara, K., eds., Seismic Tomography: Theory and Practice. Chapmanand & Hall, London. 227–247

    Google Scholar 

  • Paige, C. C., Saunders, M. A., 1982. LSQR: An Algorithm for Sparse Linear-Equations and Sparse Least-Squares. ACM Trans. Math. Software, 8(1): 43–71

    Article  Google Scholar 

  • Sato, H., Tanio, I., Takaya, I., 2002. Seismic Reflection Image of Lithospheric Structure beneath Shikoku, SW Japan: Preliminary Result of Shikoku 2002. EOS Trans. AGU, 83(47): F1294

    Google Scholar 

  • Schmitz, M., Martinsa, A., Izarra, C., et al., 2005. The Major Features of the Crustal Structure in North-Eastern Venezuela from Deep Wide-Angle Seismic Observations and Gravity Modelling. Tectonophysics, 399(1–4): 109–124

    Article  Google Scholar 

  • Shih, R., 2008. Three Dimensional Seismic Tomography of the Shallow Subsurface Structure under the Meihua Lake in Ilan, Northeastern Taiwan. EOS Trans. AGU, 89(53): S23A–1150

    Google Scholar 

  • Sleeman, R., van Eck, T., 1999. Robust Automatic P-Phase Picking: An On-Line Implementation in the Analysis of Broadband Seismogram Recordings. Phys. Earth Planet. Inter., 113(1–4): 265–275

    Article  Google Scholar 

  • ten Brink, U. S., Al-Zoubi, A. S., Flores, C. H., et al., 2006. Seismic Imaging of Deep Low-Velocity Zone beneath the Dead Sea Basin and Transform Fault: Implications for Strain Localization and Crustal Rigidity. Geophys. Res. Lett., 33(24): L24314

    Article  Google Scholar 

  • Teng, J. W., Liu, F. T., Quan, Y. L., 1994. Seismic Tomography of the Crust and Mantle under the Orogenic Belts and Sedimentary Basins of North Western China. Oceanic Publication, Beijing. 66–80 (in Chinese)

    Google Scholar 

  • Wang, Y. J., Qian, R. Y., Jiang, M., et al., 2006. Image of Crust and Upper Mantle Velocity Structure along the Array from Fuyun to Kuerle by Seismic Tomography. Acta Geologica Sinica, 80(1): 142–147 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Y. X., Han, G. H., Jiang, M., et al., 2004. Crustal Structure along the Geosciences Transect from Altay to Altun Tagh. Chinese J. Geophys., 47(2): 240–249 (in Chinese with English Abstract)

    Google Scholar 

  • Wei, S. H., Xue, G. Q., Qian, H., et al., 2000. Xinjiang Kuche-Kelamayi Seismic Tomography. Progress in Geophysics, 15(4): 46–54 (in Chinese with English Abstract)

    Google Scholar 

  • Wessel, P., Smith, W. H. F., 1998. New, Improved Version of the Generic Mapping Tools Released. EOS Trans. AGU, 79: 579

    Article  Google Scholar 

  • Xiao, W. J., Shu, L. S., Gao, J., et al., 2009. Geodynamic Processes of the Central Asian Orogenic Belt and Its Metallogeny. China Basic Science, 11(3): 14–19 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, Z., Ge, S. M., 1980. Preliminary Study of the Fracture Zone by 1931 Fuyun Earthquake and the Features of Neotectonic Movement. Seismology and Geology, 2(3): 31–37 (in Chinese with English Abstract)

    Google Scholar 

  • Yordkayhun, S., Tryggvason, A., Norden, B., et al., 2009. 3D Seismic Traveltime Tomography Imaging of the Shallow Subsurface at the CO2 SINK Project Site, Ketzin, Germany. Geophysics, 74(1): G1–G15

    Article  Google Scholar 

  • Zhang, H. J., Thurber, C., Rowe, C., 2003. Automatic P-Wave Arrival Detection and Picking with Multiscale Wavelet Analysis for Single-Component Recordings. Bull. Seismol. Soc. Am., 93(5): 1904–1912

    Article  Google Scholar 

  • Zhang, Z. J., Teng, J. W., Fan, J. Y., et al., 2002a. East-West Crustal Structure and “Down-Bowing” Moho under the Northern Tibet Revealed by Wide-Angle Seismic Profile. Science in China (Series D), 45(6): 550–558

    Article  Google Scholar 

  • Zhang, Z. J., Teng, J. W., Yang, L. Q., et al., 2002b. Crustal Structure and Eastward Escaping of Crustal Materials in the Southern Tibet. Science in China (Series D), 32(10): 793–798 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao Mei  (梅宝).

Additional information

This study was supported by the National Natural Science Foundation of China (No. 40730317), and National Basic Research Program of China (No. 2007CB411300).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, B., Xu, Y. & Qian, H. Active source tomography in northwestern Xinjiang, China: Implication for mineral distribution. J. Earth Sci. 22, 214–225 (2011). https://doi.org/10.1007/s12583-011-0174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-011-0174-9

Key Words

Navigation