Skip to main content
Log in

Abstract

Recently, a novel lattice Boltzmann relaxation scheme is introduced for simulating compressible flows in Raghurama Rao et al. (A lattice Boltzmann relaxation scheme (LBRS) for inviscid compressible flows, 2015. arXiv:1504.07034), Deshmukh (lattice Boltzmann relaxation schemes for high-speed flows, PhD Thesis, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, 2016). A similar framework of discrete velocities, together with artificial compressibility method (ACM) as another foundation, is introduced here with an aim to simulate incompressible fluid flow equations. The scheme is first introduced for inviscid incompressible flows and applied to quasi-1-D and 2-D incompressible Euler equations. To extend the formulation to viscous flows, Chapman–Enskog expansion is performed and two different approaches are introduced to simulate viscous flows. The new framework, LBRS-ACM, is then tested for standard viscous incompressible flow test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85, 257–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, D.A., Tannehill, J.C., Pletcher, R.H., Munipalli, R., Shankar, V.: Computational Fluid Mechanics and Heat Transfer. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  5. Drikakis, D., Rider, W.: High Resolution Methods for Incompressible and Low-Speed Flows. Springer, Berlin (2005)

    Google Scholar 

  6. Kwak, D., Kiris, C.: Computation of Viscous Incompressible Flow. Springer, Berlin (2010)

    MATH  Google Scholar 

  7. Succi, S.: The Lattice Boltzmann Equation For Complex States of Flowing Matter. Oxford University Press, Oxford (2018)

    Book  MATH  Google Scholar 

  8. Karlin, I.V., Tomboulides, A.G., Frouzakis, C.E., Ansumali, S.: Kinetically reduced local Navier–Stokes equations: An alternative approach to hydrodynamics. Phys. Rev. E 74, 035702(R) (2006)

    Article  Google Scholar 

  9. Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Natalini, R.: A Discrete Kinetic Approximation of Entropy Solutions to Multidimentional Scalar Conservation Laws. J. Differ. Equ. 148, 292–317 (1998)

    Article  MATH  Google Scholar 

  11. Deshmukh, R.L.: Lattice Boltzmann Relaxation Schemes for High Speed Flows, PhD Thesis, Department of Aerospace Engineering, Indian Institute of Science, Bangalore (2016)

  12. Raghurama Rao, S.V., Deshmukh Rohan L., Kotnala, S.: A Lattice Boltzmann Relaxation Scheme for Inviscid Compressible Flows, arXiv:1504.07034 (2015)

  13. Chorin, A.J.: A Numerical Method for solving Incompressible Viscous Flow Problems. J. Comput. Phys. 2, 12–26 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peyret, R., Taylor, T.: Computational Methods for Fluid Flow. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  15. Ohwada, T., Asinari, P., Yabusaki, D.: Artificial compressibility method and lattice Boltzmann method: Similarities and differences. Comput. Math. Appl. 61, 3461–3474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Asinari, P., Ohwada, T., Chiavazzo, E., Di Rienzo, A.F.: Link-wise artificial compressibility method. J. Comp. Phys. 231(15), 5109–5143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wolf-Gladrow, D.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer-Verlag, Berlin (2000)

    Book  MATH  Google Scholar 

  18. Ruhi, A.: Kinetic Theory Based Numerical Schemes for Incompressible Flows, PhD Thesis, Department of Aerospace Engineering, Indian Institute of Science, Bangalore (2016)

  19. Iannelli, J.: Characteristics Finite Element Methods in Computational Fluid Dynamics. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Arun, K.R., Raghurama Rao, S.V , Lukáčová -Medvid’ová, M., Prasad, Phoolan.: A Genuinely Multi-dimensional Relaxation Scheme for Hyperbolic Conservation Laws, In: Proceedings of the Seventh ACFD Conference, Indian Institute of Science, Bangalore, pp. 1029-1039, November 26-30 (2007)

  21. Arun, K.R., Lukáčová -Medvid’ová, M., Prasad, Phoolan ., and Raghurama Rao, S.V.: A second order accurate kinetic relaxation scheme for inviscid compressible flows, In: Recent Developments in Numerics of Nonlinear Hyperbolic Conservation Laws, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 120, pp. 1-24, Springer-Verlag (2013)

  22. Arun, K.R., Lukáčová-Medvid’ová, M.: A characteristics based genuinely multidimensional discrete kinetic scheme for the Euler equations. J. Sci. Comput. 55, 40–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jayaraj: A Novel Multi-dimensional Relaxation Scheme for Hyperbolic Conservation Laws, M.Tech. thesis, Department of Mechanical Engineering, University B.D.T. College of Engineering, Davanagere, Karnataka, India (2006)

  24. Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95, 113–170 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Arora, M., Roe, P.L.: A fresh look at viscous conservation laws via equivalent relaxation systems. Zeitschrift für angewandte Mathematik und Mechanik 76, 347–348 (1996)

    MATH  Google Scholar 

  26. Ghia, U., Ghia, K.N., Shin, C.T.: High-re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comp. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  27. Könözsy, L., Drikakis, D.: A unified fractional-step, artificial compressibility and pressure-projection formulation for solving the incompressible Navier–Stokes equations. Commun. Comput. Phys. 16(5), 1135–1180 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Biswas, G., Breuer, M., Durst, F.: Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers, Transactions-American Society of Mechanical Engineers Journal of Fluid. Engineering 126, 362–374 (2004)

    Google Scholar 

  29. Armaly, B.F., Durst, F., Peireira, J.C.F., Schönung, B.: Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473–496 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Raghurama Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruhi, A., Raghurama Rao, S.V. & Muddu, S. A lattice Boltzmann relaxation scheme for incompressible fluid flows. Int J Adv Eng Sci Appl Math 14, 34–47 (2022). https://doi.org/10.1007/s12572-022-00320-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-022-00320-5

keywords

Navigation