Skip to main content
Log in

Activity of supported MoO3 catalysts for the transesterification of sunflower oil

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Investigations on the transesterification of sunflower oil over MoO3 (8 %) supported on SiO2, SiO2–Al2O3, TiO2 and Al2O3, carried out in order to elucidate the effects of the support on the nature of the supported MoO3 species and transesterification activity, are reported. The supported MoO3 samples were calcined at two temperatures (800 and 950 K). The samples were characterized by physicochemical and spectroscopic methods to identify the different MoO3 species present at the surface. The catalytic activities of the samples were evaluated in the transesterification of sunflower oil with methanol at different temperatures and at different run times in a batch reactor. The support is found to have major influence on the effect of calcination temperature on the nature of the supported MoO3 species and catalytic activity. Besides, the support influences the stability of the MoO3 during the reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Serio, M.D., Tesser, R., Pengmei, L., Santacesaria, E.: Heterogeneous catalysts for biodiesel production. Energy Fuels 22, 207–217 (2008)

    Article  Google Scholar 

  2. Helwani, Z., Othman, M.R., Aziz, A., Kim, J., Fernando, W.J.N.: Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl. Catal. A 363, 1–10 (2009)

    Article  Google Scholar 

  3. Schuchardt, U., Sercheli, R., Vargas, R.M.: Transesterification of vegetable oils: a review. J. Braz. Chem. Soc. 9, 199–210 (1998)

    Article  Google Scholar 

  4. Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G.: Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 44, 5353–5363 (2005)

    Article  Google Scholar 

  5. Peterson, G.R., Scarrah, W.P.: Rapeseed oil transesterification by heterogeneous catalysis. J. Am. Oil Chem. Soc. 61, 1593–1596 (1984)

    Article  Google Scholar 

  6. Bournay, L., Casanave, D., Delfort, B., Hillion, G., Chodorge, J.A.: New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal. Today 106, 190–192 (2005)

    Article  Google Scholar 

  7. Pugnet, V., Maury, S., Coupard, V., Dandeu, A., Quoineaud, A.A., Bonneau, J.L., Tichit, D.: Stability, activity and selectivity study of a zinc aluminate heterogeneous catalyst for the transesterification of vegetable oil in batch reactor. Appl. Catal. A 374, 71–78 (2010)

    Article  Google Scholar 

  8. Srinivas, D., Satyarthi, J.K.: Biodiesel production from vegetable oils and animal fat over solid acid double-metal cyanide catalysts. Catal. Surv. Asia 15, 145–160 (2011)

    Article  Google Scholar 

  9. Kulkarni, M.G., Gopinath, R., Meher, L.C., Dalai, A.K.: Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem. 8, 1056–1062 (2006)

    Article  Google Scholar 

  10. Lopez, D.E., Goodwin Jr, J.G., Bruce, D.A., Lotero, E.: Transesterification of triacetin with methanol on solid acid and base catalysts. Appl. Catal. A 295, 97–105 (2005)

    Article  Google Scholar 

  11. Lopez, D.E., Goodwin Jr, J.G., Bruce, D.A.: Transesterification of triacetin with methanol on Nafion acid resins. J. Catal. 245, 381–391 (2007)

    Article  Google Scholar 

  12. Leclercq, E., Finiels, A., Moreau, C.: Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts. J. Am. Oil Chem. Soc. 78, 1161–1165 (2001)

    Article  Google Scholar 

  13. Ni, J., Rooney, D., Meunier, F.C.: CsF and alumina: a mixed homogeneous–heterogeneous catalytic system for the transesterification of sunflower oil with methanol. Appl. Catal. B 97, 269–275 (2010)

    Article  Google Scholar 

  14. Kim, H.J., Kang, B.S., Kim, M.J., Park, Y.M., Kim, D.K., Lee, J.S., Lee, K.Y.: Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal. Today 315, 93–95 (2004)

    Google Scholar 

  15. Xie, W., Li, H.: Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. J. Mol. Catal. A 255, 1–9 (2006)

    Article  Google Scholar 

  16. Macias, E.M., Deshmane, C.A., Jasinski, J.B., Carreon, M.A., Ratnasamy, P.: Catalytic transformations of methyl oleate and biodiesel over mesoporous gallium–niobium oxides. Catal. Commun. 12, 644–650 (2011)

    Article  Google Scholar 

  17. Yan, S.L., Salley, S.O., Simon Ng, K.Y.: Simultaneous transesterification and esterification of unrefined or waste oils over ZnO–La2O3 catalysts. Appl. Catal. A 353, 203–212 (2009)

    Article  Google Scholar 

  18. Russbueldt, B.M.E., Hoelderich, W.F.: New rare earth oxide catalysts for the transesterification of triglycerides with methanol resulting in biodiesel and pure glycerol. J. Catal. 271, 290–304 (2010)

    Article  Google Scholar 

  19. Sankaranarayanan, T.M., Pandurangan, A., Banu, M., Sivasanker, S.: Transesterification of sunflower oil over MoO3 supported on alumina. Appl. Catal. A 409–410, 239–247 (2011)

    Article  Google Scholar 

  20. Zingg, D.S., Makovsky, L.E., Tlscher, R.E., Brown, F.R., Hercules, D.M.: A surface spectroscopic study of molybdenum-alumina catalysts using X-ray photoelectron, ion-scattering, and Raman spectroscopies. J. Phys. Chem. 84, 2898–2906 (1980)

    Article  Google Scholar 

  21. Jezlorowski, H., Knozinger, H.: Raman and ultraviolet spectroscopic characterization of molybdena on alumina catalysts. J. Phys. Chem. 83, 1166–1173 (1979)

    Article  Google Scholar 

  22. Tian, H., Wachs, I.E., Briand, L.E.: Comparison of UV and visible Raman spectroscopy of bulk metal molybdate and metal vanadate catalysts. J. Phys. Chem. B 109, 23491–23499 (2005)

    Article  Google Scholar 

  23. Lee, E.L., Wachs, I.E.: In situ spectroscopic investigation of the molecular and electronic structures of SiO2 supported surface metal oxides. J. Phys. Chem. C 111, 14410–14425 (2007)

    Article  Google Scholar 

  24. Ono, T., Anpo, M., Kubokawa, Y.: Catalytic activity and structure of MoO3 highly dispersed on SiO2. J. Phys. Chem. 90, 4780–4784 (1986)

    Article  Google Scholar 

  25. Mestl, G., Srinivasan, T.K.K.: Raman spectroscopy of monolayer-type catalysts: supported molybdenum oxides. Catal. Rev. 40, 451–570 (1998)

    Article  Google Scholar 

  26. Giordano, N., Meazza, M., Castellan, A., Bart, J.C.J., Ragaini, V.: Structure and catalytic activity of MoO3;SiO2, systems III. Mechanism of oxidation of propylene. J. Catal. 50, 342–352 (1977)

    Article  Google Scholar 

  27. Chua, Y.T., Stair, P.C., Wachs, I.E.: A comparison of ultra violet and visible Raman spectra of supported metal oxide catalysts. J. Phys. Chem. B 105, 8600–8606 (2001)

    Article  Google Scholar 

  28. Vuurmant, M.A., Wachs, I.E.: In situ Raman spectroscopy of alumina-supported metal oxide catalysts. J. Phys. Chem. 96, 5008–5016 (1992)

    Article  Google Scholar 

  29. Yao, H.C.: Surface interaction in the MoO3/γ-Al2O3 system. J. Catal. 70, 440–444 (1981)

    Article  Google Scholar 

  30. Giordano, N., Bart, J.C.J., Vaghi, A., Castellan, A., Martinotti, G.: Structure and catalytic activity of MoO3.Al2O3 systems. Solid-state properties of oxidized catalysts. J. Catal. 36, 81–92 (1975)

    Article  Google Scholar 

  31. Giordano, N., Bart, J.C.J., Castellan, A., Vaghi, A.: Some physico-chemical properties of molybdenum oxide supported on γ-Alumina. J. Less-Common Met. 36, 367–379 (1974)

    Article  Google Scholar 

  32. Okamoto, Y., Ogawa, M., Maezawa, A., Imanaka, T.: Electronic structure of zeolites studied by X-ray photoelectron spectroscopy. J. Catal. 112, 427–436 (1988)

    Article  Google Scholar 

  33. Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy. ULVAC-PHI, Inc., Japan (1995)

    Google Scholar 

  34. Thomas, R., Oers, E.M.V., Beer, H.J.D., Medeme, J., Moulijin, J.A.: Characterization of γ-alumina-supported molybdenum oxide and tungsten oxide; reducibility of the oxidic state versus hydrodesulfurization activity of the sulfided state. J. Catal. 76, 241–253 (1982)

    Article  Google Scholar 

  35. Stampfl, S.R., Chen, Y., Dumesic, J.A., Niu, C., Hill, C.G.: Interactions of molybdenum oxide with various oxide supports: calcination of mechanical mixtures. J. Catal. 105, 445–454 (1987)

    Article  Google Scholar 

  36. Muralidhar, G., Concha, B.E., Bariholomew, G.L., Bartholomew, H.: Characterization of reduced and sulfided, supported molybdenum catalysts by O2 chemisorption, X-ray diffraction, and ESCA. J. Catal. 89, 274–284 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank The Head, NCCR, IIT Madras and DST, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivasanker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 879 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankaranarayanan, T.M., Thirunavukkarasu, K., Banu, M. et al. Activity of supported MoO3 catalysts for the transesterification of sunflower oil. Int J Adv Eng Sci Appl Math 5, 197–209 (2013). https://doi.org/10.1007/s12572-013-0097-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-013-0097-z

Keywords

Navigation