Skip to main content
Log in

Prediction of equiaxed grain structure and macrosegregation in an industrial steel ingot: comparison with experiment

  • Original Research
  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Chemical heterogeneities and grain structures significantly influence the quality and final properties in solidified ingots, and the phenomena responsible for their formation during solidification are closely related. Two significant issues exist, which make the prediction of chemical heterogeneities and grain structures in industrial ingots a difficult task. The first challenge is that development of such models combining these two aspects is still at its beginning, and the second challenge is the size of the industrial ingots, where a number of phenomena need to be accounted for. In this article, we present macro-segregation and grain structures predictions in a 6.2-ton industrial steel ingot using a multiphase and multiscale model. In the model used the grain growth model is fully coupled with a volume-averaged two-phase macroscopic solidification model that accounts for macroscopic fluid flow, grain transport, heat transfer, and solute transport. A comparison between experiment and numerical results is discussed in order to illustrate the capabilities and limitations of the model. Notably, it is demonstrated that accounting for grain motion improves the predictions, compared to the case where the solid is assumed to be fixed. The model is also able to predict the globular grain in the bottom part and dendritic grains in the remaining part of the ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mazet, T.: Etude des structures de solidification et des ségrégations dans les lingots d’acier. Ph.D Thesis, Institut National Polytechnique de Lorraine, Nancy, France (1995)

  2. Lesoult, G.: Macro-segregation in steel strands and ingots: Characterisation, formation and consequences. Mater. Sci. Eng. A 413–414, 19–29 (2005)

    Google Scholar 

  3. Appolaire, B., Combeau, H., Lesoult, G.: Modeling of equiaxed growth in multi-component alloys accounting for convection and for the globular/dendritic morphological transition. Mater. Sci. Eng. A 487, 33–45 (2008)

    Article  Google Scholar 

  4. Založnik, M., Combeau, H.: The influence of the morphology evolution of free-floating equiaxed grains on macro-segregation in a 3.3-ton steel ingot. In: Cockroft, S.L., Maijer, D.M. (eds.) Modeling of Casting. Welding and Advanced Solidification Processes–XII, pp. 165–172. TMS, Warrendale (PA) USA (2009)

    Google Scholar 

  5. Založnik, M., Combeau, H.: An operator splitting scheme for coupling macroscopic transport and grain growth in a two-phase multiscale solidification model: Part I—model and solution scheme. Comput. Mater. Sci. 48, 1–10 (2009)

    Article  Google Scholar 

  6. Založnik, M., Kumar, A., Combeau, H.: An operator splitting scheme for coupling macroscopic transport and grain growth in a two-phase multiscale solidification model: Part II—Application of the model. Comput. Mater. Sci. 48, 11–21 (2009)

    Article  Google Scholar 

  7. Combeau, H., Kumar, A., Založnik, M.: Modeling of equiaxed grain evolution and macrosegregations development in steel ingots. Trans. Indian Inst. Met. 62, 285–290 (2009)

    Article  Google Scholar 

  8. Wang, C.Y., Beckermann, C.: Equiaxed dendritic solidification with convection: Part I. Multiscale/multiphase modeling. Metall. Mater. Trans. A 27, 2754–2764 (1996)

    Article  Google Scholar 

  9. Vreeman, C.J., Krane, M.J.M., Incropera, F.P.: The effect of free-floating dendrites and convection on macro-segregation in direct cast aluminum alloys-II: Model development. Inter. J. Heat Mass Transfer 43, 677–686 (2000)

    Article  MATH  Google Scholar 

  10. Kumar, A., Dutta, P.: Modeling of transport phenomena in continuous casting of non-dendritic billets. Inter. J. Heat Mass Transfer 48, 3674–3688 (2005)

    Article  MATH  Google Scholar 

  11. Chakraborty, S., Kumar, A.: Transport mechanisms of falling crystals detached from the freezing front during solidification of a hypereutectic binary mixture. Phys. Rev. Lett. 95(024504), 1–4 (2005)

    Google Scholar 

  12. Kumar, A., Dutta, P.: A scaling analysis of momentum and heat transport during solidification in presence of electromagnetic stirring. J. Phys. D Appl. Phys. 39, 3058–3062 (2006)

    Article  Google Scholar 

  13. Ludwig, A., Wu, M.: Modeling the columnar-to-equiaxed transition with a three-phase Eulerian approach. Mater. Sci. Eng. A 413–414, 109–114 (2005)

    Google Scholar 

  14. Ciobanas, A.I., Fautrelle, Y., Baltaretu, F., Bianchi, A.M., Noppel, A.: Ensemble averaged two-phase Eulerian model for columnar/equiaxed solidification of a binary alloy-simulation of the columnar-to-equiaxed transition. In: Gandin, Ch.-A., Bellet, M. (eds.) Modeling of Casting, Welding and Advanced Solidification Processes—XI, pp. 299–306. TMS, France (2006)

    Google Scholar 

  15. Combeau, H., Založnik, M., Hans, S., Richy, P.E.: Prediction of macro-segregation in steel ingots. Influence of the motion and the morphology of equiaxed grains. Metall. Mater. Trans. B 40, 289–304 (2009)

    Article  Google Scholar 

  16. Kumar, A., Dutta, P.: Numerical studies on columnar-to-equiaxed transition in directional solidification of binary alloys. J. Mater. Sci. 44, 3952–3961 (2009)

    Article  Google Scholar 

  17. Kumar, A., Dutta, P.: A Rayleigh number based dendrite fragmentation criterion for detachment of solid crystals from the solidifying interface. J. Phys. D Appl. Phys. 41, 155501 (2008). (9 pp)

    Article  Google Scholar 

  18. Kumar, A., Walker, M.J., Sundarraj, S., Dutta, P.: Remelting of solid and its effect on macro-segregation during solidification. Numer. Heat Transfer Part A 51(1), 59–83 (2007)

    Article  Google Scholar 

  19. Gu, J.P., Beckermann, C.: Simulation of convection and macro-segregation in a large steel ingot. Metall. Mater. Trans. A 30(5), 1357–1366 (1999)

    Article  Google Scholar 

  20. Vannier, I., Combeau, H., Lesoult, G.: Numerical prediction of the final segregation pattern of bearing steel ingot. Mater. Sci. Eng. A 173, 317–321 (1993)

    Article  Google Scholar 

  21. Ahmad, N., Combeau, H., Desbiolles, J.-L., Jalanti, T., Lesoult, G., Rappaz, J., Rappaz, M., Stomp, C.: Numerical simulation of macrosegregation: a comparison between finite volume method and finite element method predictions and a confrontation with experiments. Metall. Mater. Trans. A 29, 617–630 (1998)

    Article  Google Scholar 

  22. Jain, J., Kumar, A.: Dutta, P.: Numerical studies on channel formation and growth during solidification: Effect of process parameter. J. Heat Transfer–ASME Trans 129, 548–558 (2007)

    Article  Google Scholar 

  23. Kumar, A., Dussoubs, B., Založnik, M., Combeau, H.: Effect of discretization of permeability term and mesh size on macro- and meso-segregation predictions. J. Phys. D Appl. Phys. 42, 105503 (2009). (13 pp)

    Article  Google Scholar 

  24. Založnik, M., Combeau, H.: Thermosolutal flow in steel ingots and the formation of mesosegregates. Inter. J. Thermal Sci 49, 1500–1509 (2010)

    Article  Google Scholar 

  25. Martorano, M.A., Beckermann, C., Gandin, Ch-A.: A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification. Metall. Mater. Trans. A 34, 1657–1674 (2003)

    Article  Google Scholar 

  26. Kurz, W., Giovanola, B., Trivedi, R.: Theory of microstructural development during rapid solidification. Acta Metall. 34, 823–830 (1986)

    Article  Google Scholar 

  27. Gandin, Ch-A.: From constrained to unconstrained growth during directional solidification. Acta Mater. 48, 2483–2501 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by Ascometal Creas, ArcelorMittal Industeel Creusot, Aubert & Duval, Erasteel, and Alcan CRV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Combeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Založnik, M. & Combeau, H. Prediction of equiaxed grain structure and macrosegregation in an industrial steel ingot: comparison with experiment. Int J Adv Eng Sci Appl Math 2, 140–148 (2010). https://doi.org/10.1007/s12572-011-0034-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-011-0034-y

Keywords

Navigation