Skip to main content
Log in

Mesomechanical modeling of the thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamage response of asphalt concrete

  • Original Research
  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper focuses on the meso-scale computational modeling of the thermo-mechanical response of asphalt concrete mixes using for the first time a compressive coupled thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamage constitutive model. Asphalt concrete is represented by two-dimensional images of the microstructure that consist of three phases: aggregate, matrix, and interfacial transmission zone (ITZ). The matrix and ITZ are considered as thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamaged materials, while the aggregate is considered to be elastic. The effects of variation in aggregate shape, distribution, volume fraction, ITZ strength, strain rate, and temperature on the degradation and micro-damage patterns in asphalt concrete are investigated under uniaxial tension, compression, and repeated creep-recovery loading conditions. It is concluded that the aggregate volume fraction and distribution significantly influence the micromechanical response of asphalt concrete. Additionally, the results indicate that the constitutive model presented in this paper can provide a computational tool for predicting the overall macroscopic behavior of asphalt concrete based on the distribution of the microstructure constituents and the properties of these constituents. As such, the results of this computational model can be used to guide the design of asphalt concrete mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Abaqus.: Version 6.8., Providence, RI (2008)

  2. Abu Al-Rub, R.K., Voyiadjis, G.: Gradient-enhanced coupled plasticity-anisotropic damage model for concrete fracture: computational aspects and applications. Int. J. Damage Mech. 18, 115–154 (2009)

    Article  Google Scholar 

  3. Abu Al-Rub, R.K., Masad, E.A., Huang, C.W.: Improving the sustainability of asphalt pavements through developing a predictive model with fundamental material properties, Final Report submitted to Southwest University Transportation Center, Report # SWUTC/08/476660-0007-1 (2009)

  4. Abu Al-Rub, R.K., Darabi, M.K., Little, D., Masad, E.A.: A micro-damage healing model that improves prediction of fatigue life of asphalt mixes. Int. J. Eng. Sci. 48, 966–990 (2011)

    Article  Google Scholar 

  5. Chang, G., Meegoda, J.: Micromechanical model for temperature effects of hot-mix asphalt concrete. Transp. Res. Rec. 1687, 95–103 (1999)

    Article  Google Scholar 

  6. Collop, A., Scarpas, A., Kasbergen, C., de Bondt, A.: Development and finite element implementation of stress-dependent elastoviscoplastic constitutive model with damage for asphalt. Transp. Res. Rec. 1832(1), 96–104 (2003)

    Article  Google Scholar 

  7. Dai, Q., Sadd, M.: Parametric model study of microstructure effects on damage behavior of asphalt samples. Int. J. Pavement Eng. 5(1), 19–30 (2004)

    Article  Google Scholar 

  8. Dai, Q., Sadd, M., You, Z.: A micromechanical finite element model for linear and damage-coupled viscoelastic behaviour of asphalt mixture. Int. J. Num. Analyt. Methods Geomech. 30(11), 1135 (2006)

    Article  MATH  Google Scholar 

  9. Darabi, M.K., Abu Al-Rub, R.K., Masad, E., Huang, C., Dallas, L.: A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphalt materials. Int. J. Solids Struct. 48, 191–207 (2011)

    Article  MATH  Google Scholar 

  10. Darabi, M.K., Abu Al-Rub, R.K., Masad, E.A., Little, D.: Thermodynamic based model for coupling viscoelastic, viscoplastic, and viscodamage constitutive behavior of asphalt mixtures. Int. J. Num. Analyt. Methods Geomech. (in press) (2010)

  11. Dessouky, S., Masad, E., Little, D., Zbib, H.: Finite-element analysis of hot mix asphalt microstructure using effective local material properties and strain gradient elasticity. J. Eng. Mech. 132, 158 (2006)

    Article  Google Scholar 

  12. Haj-Ali, R., Muliana, A.: Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int. J. Num. Methods Eng. 59(1), 25–45 (2003)

    Article  Google Scholar 

  13. Huang, C., Masad, E., Muliana, A., Bahia, H.: Nonlinearly viscoelastic analysis of asphalt mixes subjected to shear loading. Mech. Time-Depend. Mater. 11(2), 91–110 (2007)

    Article  Google Scholar 

  14. Huang, C.W., Abu Al-Rub, R.K., Masad, E.A., Little, D.N.: Three dimensional simulations of asphalt pavement performance using a nonlinear viscoelastic-viscoplastic model. ASCE J. Mater. Civil Eng. 23, 56–68 (2011)

    Article  Google Scholar 

  15. Kachanov, L.M.: On time to rupture in creep conditions (in Russian). Izviestia Akadamii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk 8, 26–31 (1958)

    Google Scholar 

  16. Kim, Y.R., Lutif, J.E.S., Allen, D.H.: Determining representative volume elements of asphalt concrete mixtures without damage. Trans. Res. Rec. 2127, 52–59 (2009)

    Google Scholar 

  17. Lai, J., Bakker, A.: 3-D Schapery representation for non-linear viscoelasticity and finite element implementation. Comput. Mech. 18(3), 182–191 (1996)

    Article  MATH  Google Scholar 

  18. Lemaitre, J., Chaboche, J.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  19. Li, X.J., Marasteanu, M.O., Kvasnak, A., Bausano, J., Williams, R.C., Worel, B.: Factors study in low-temperature fracture resistance of asphalt concrete. J. Mater. Civil Eng. 22(2), 145–152 (2010)

    Article  Google Scholar 

  20. Luo, H., Zhu, H., Miao, Y., Chen, C.: Simulation of top-down crack propagation in asphalt pavements. J. Zhejiang Univ. Sci. A 11(3), 223–230 (2010)

    Article  MATH  Google Scholar 

  21. Mahmoud, E., Masad, E., Nazarian, S.: Discrete Element Analysis of the Influences of Aggregate Properties and Internal Structure on Fracture in Asphalt Mixtures. J. Mater. Civil Eng. 22, 10 (2010)

    Article  Google Scholar 

  22. Masad, E., Dessouky, S., Little, D.: Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt. Int. J. Geomech. 7, 119 (2007)

    Article  Google Scholar 

  23. Masad, E., Somadevan, N., Bahia, H., Kose, S.: Modeling and experimental measurements of strain distribution in asphalt mixes. J. Transp. Eng. 127, 477 (2001)

    Article  Google Scholar 

  24. Masad, E., Tashman, L., Little, D., Zbib, H.: Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics. Mech. Mater. 37(12), 1242–1256 (2005)

    Article  Google Scholar 

  25. Mo, L., Huurman, M., Wu, S., Molenaar, A.: Investigation into stress states in porous asphalt concrete on the basis of FE-modelling. Finite Elem. Anal. Des. 43(4), 333–343 (2007)

    Article  Google Scholar 

  26. Mo, L., Huurman, M., Wu, S., Molenaar, A.: 2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete. Finite Elem. Anal. Des. 44(4), 186–196 (2008)

    Article  Google Scholar 

  27. Papagiannakis, A., Abbas, A., Masad, E.: Micromechanical analysis of viscoelastic properties of asphalt concretes. Transp. Res. Rec. 1789(1), 113–120 (2002)

    Article  Google Scholar 

  28. Perzyna, P.: Thermodynamic theory of viscoplasticity. Adv. Appl. Mech. 11, 313–354 (1971)

    Article  Google Scholar 

  29. Sadd, M., Dai, Q., Parameswaran, V., Shukla, A.: Simulation of asphalt materials using finite element micromechanical model with damage mechanics. Transp. Res. Rec. 1832(1), 86–95 (2003)

    Article  Google Scholar 

  30. Schapery, R.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)

    Article  Google Scholar 

  31. Tashman, L., Masad, E., Little, D., Zbib, H.: A micro structure-based viscoplastic model for asphalt concrete. Int. J. Plasticity 21(9), 1659–1685 (2005)

    Article  MATH  Google Scholar 

  32. Woldekidan, M.: Performance study of C-Fix in PAC using a 2D finite element model. M.Sc. Thesis, Delft University of Technology, The Netherlands (2006)

  33. You, Z., Adhikari, S., Dai, Q.: Three-dimensional discrete element models for asphalt mixtures. ASCE J. Eng. Mech. 134(12), 1053–1063 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the financial support provided by Qatar Nation Research Fund (QNRF) through the National Priority Research Program project 08-310-2-110. The QNRF funding supported the developed meso-scale model presented in this study. In addition, the authors acknowledge the support of the US Federal Highway Administration through the Asphalt Research Consortium (ARC). The ARC funding supported the development of the constitutive model presented in this study. Also, fruitful discussions with Mr. Masoud Darabi and Dr. Sun-Myung Kim from Texas A&M University about the meso-scale simulations are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid K. Abu Al-Rub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu Al-Rub, R.K., You, T., Masad, E.A. et al. Mesomechanical modeling of the thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamage response of asphalt concrete. Int J Adv Eng Sci Appl Math 3, 14–33 (2011). https://doi.org/10.1007/s12572-011-0028-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-011-0028-9

Keywords

Navigation