Skip to main content
Log in

Anisotropic molecular scattering at microstructured surface for rarefied gas compression inside air breathing ion engine

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The effect of the micro-structure surface on the passive compression performance of the intake system of an air-breathing ion engine (ABIE) system is proposed and analysed. The scattering distributions of the thermal Ar beam pulses at the microstructure surface were measured experimentally. The scattering process at the microstructure surface demonstrated anisotropic nature at a grazing angle of incidence; however, it demonstrated a complex scattering pattern due to the multiple bounce effect at the facet surface, despite each scattering pattern being similar to that on the flat surface. The DSMC calculation at an altitude of 250 km was also performed using the simple scattering model, which is based on the experimental results of scattering distribution and recent ABIE design. The computational results indicate that the compression performance of the microstructure intake is higher than that of the diffusive and specular flat intakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

N/A.

Code availability

N/A.

References

  1. GOCE home page: http://www.esa.int/Our_Activities/Observing_the_Earth/GOCE (2020)

  2. Imamura, S., Utashima, M., Ozawa, T., Akiyama, K., Sasaki, M.: Current status of the on-going orbit transfer of super low altitude test satellite (SLATS). In: Proceedings of the 69th International Astronautical Congress, IAC-18-C1.8.1. Bremen, Germany (2018)

  3. Cara D., Amo G., Santovincenzo A., Dominguez B., Arcioni M., Roma A.: RAM electric propulsion for low earth orbit operation. In: an ESA Study, IEPC-2007-162 (2007)

  4. Cifali G., Misuri T., Rossetti P., Andrenucci M., Valentian D., Feili D. Lotz B.: Experimental characterization of HET and RIT with atmospheric propellants. In: Proceedings of 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC-2011-224 (2011)

  5. Zheng, P., Wu, J., Zhang, Y., Wu, B.: A comprehensive review of atmosphere-breathing electric propulsion systems. Int. J. Aerosp. Eng. 2020, 1–21 (2020)

    Google Scholar 

  6. Nishiyama K.: Air breathing ion engine concept. In: Proceedings of the 54th international astronautical congress of the international astronautical federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany, IAC-03-S.4.02 (2003). doi: 10.2514/6. IAC-03-S.4.02

  7. Coral, G., Tsukizaki, R., Nishiyama, K., Kuninaka, H.: Microwave power absorption to high energy electrons in the ECR ion thruster. Plasma Sourc. Sci. Technol. 27, 095015 (2018)

    Article  Google Scholar 

  8. Romano, F., Espinosa-Orozco, J., Pfeiffer, M., Herdrich, G., Crisp, N.H., Roberts, P.C.E., Holmes, B.E.A., Edmondson, S., Haigh, S., Livadiotti, S., Macario-Rojas, A., Okio, V.T.A., Sinpetru, L.A., Smith, K., Becedas, J., Sulliotti-Linner, V., Bisgaard, M., Christensen, S., Hanessian, V., Kaufman-Jensen, T., Nelson, J., Chan, Y.A., Fasoulas, S., Traub, C., Garcia-Alminana, D., Rodrigues-Donaire, S., Sureda, M., Kataria, D., Belkouchi, B., Conte, A., Seminari, S., Villain, R.: Intake design for an atmosphere-breathing propulsion system (ABEP). Acta Astronaut. 187, 225–235 (2021)

    Article  Google Scholar 

  9. Tagawa M., Nishiyama K., Yokota K., Yoshizawa Y., Yamamoto D., Kuninaka H.: An experimental study on air breathing ion engine using a laser-detonation atomic oxygen beam source as LEO space environment simulator. In: The 27th International Symposium on Space Technology and Science, Tsukuba, Japan, 2009.07.05–07.12, on USB Memory (2009)

  10. Tagawa, M., Nishiyama, K., Yokota, K., Yoshizawa, Y., Yamamoto, D., Tsuboi, T., Kuninaka, H.: Experimental study on air breathing ion engine using laser detonation beam source. J. Propul. Power 29, 501–506 (2013)

    Article  Google Scholar 

  11. Yokota, K., Tagawa, M., Fujimoto, Y., Ide, W., Kimoto, Y., Tsuchiya, Y., Goto, A., Yukumatsu, K., Miyazaki, E., Imamura, S.: Effect of simultaneous N2 collisions on atomic oxygen-induced polyimide erosion in sub-low Earth orbit: comparison of laboratory and SLATS data. CEAS Space J 13, 389–397 (2021). https://doi.org/10.1007/s12567-021-00358-4

    Article  Google Scholar 

  12. Tagawa, M., Yokota, K., Kishida, K., Okamoto, A., Ishizawa, J., Minton, T.K.: Effect of ultraviolet emission from the oxygen plasma on the accelerated erosion phenomenon of fluorinated polymer in the atomic oxygen ground tests. High Perform. Polym. 22, 213–224 (2010)

    Article  Google Scholar 

  13. Kenoshita, H., Tagawa, M., Yokota, K., Ohnae, N.: Nonlinear phenomenon in the mass-loss of polyimide film under hyperthermal atomic oxygen beam exposure. High Perform. Polym. 13, 225–234 (2001)

    Article  Google Scholar 

  14. Muino, R.D., Busnengo, H.F. (eds.): Dynamics of Gas-Surface Interactions. Springer, Berlin (2013)

    MATH  Google Scholar 

  15. Mehta, N.A., Murray, V.J., Xu, C., Levin, D.A., Minton, T.K.: J. Phys. Chem. C 122, 9859–9874 (2018)

    Article  Google Scholar 

  16. Tagawa, M., Okura, R., Ide, W., Horimoto, S., Ezaki, K., Fujita, A., Shoda, K., Yokota, K.: Laser-detonation hyperthermal beam source applicable to VLEO environmental simulations. CEAS Space J. 2021, 2 (2021)

    Google Scholar 

  17. Tagawa M., Okura R., Yokota K.: Reduced dissociation of molecules in laser-detonation-driven hyperthermal beams. In: Proc. Adv.Space Environ. Conf., Universal City USA (2019)

  18. Yusuke, Y., Tani, Y., Tsukizaki, R., Koda, D., Nishiyama, K.: Characterization of plasma and gas in microwave discharge ion thruster μ10 using kinetic particle simulation. Trans. JSASS Aerosp. Tech. Jpn. 18, 57–63 (2020)

    Google Scholar 

  19. Ozawa T., Imamura S., Nishiyama K., Tagawa M., Fujita K., Numerical analyses of air intake for air breathing ion engine, JAXA-SP-18-005, pp. 97–101 (2019)

Download references

Acknowledgements

The authors would like to thank Professor T. K. Minton (University of Colorado, Boulder) for their valuable discussions. Part of this work was supported by KAKENHI from JSPS under contracts #18K18912, #18H01624, #19K22017, and 19H02346.

Funding

Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Tagawa.

Ethics declarations

Conflicts of interest

The author(s) declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoda, K., Kano, N., Jotaki, Y. et al. Anisotropic molecular scattering at microstructured surface for rarefied gas compression inside air breathing ion engine. CEAS Space J 15, 403–411 (2023). https://doi.org/10.1007/s12567-022-00430-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-022-00430-7

Keywords

Navigation