Skip to main content

Advertisement

Log in

Heterogeneous expression of endothelial connexin (Cx) 37, Cx40, and Cx43 in rat large veins

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Gap junctions are clusters of transmembrane protein channels for intercellular communication and are composed of connexin (Cx). The vascular endothelial cells express Cx37, Cx40, and Cx43. We herein examined the spatial distribution of the endothelial connexins Cx37, Cx40, and Cx43 in rat large veins including the cranial vena cava, thoracic section of the caudal vena cava, and abdominal section of the caudal vena cava. We also examined the mean size of the endothelial cells and quantified the protein expression levels of the endothelial connexins. We found that the large veins heterogeneously expressed Cx37, Cx40, and Cx43 as follows: Cx40 > Cx37 > > Cx43 in the cranial vena cava, Cx37 > Cx43 > > Cx40 in the thoracic section of the caudal vena cava, and Cx40 > Cx43 > > Cx37 in the abdominal section of the caudal vena cava. Double immunostaining of two of the endothelial connexins revealed that the gap-junction plaques were composed of various combinations of endothelial connexins. The mean size of the endothelial cells was large, moderate, or small in the cranial vena cava, the abdominal section of the caudal vena cava, or the thoracic section of the caudal vena cava, respectively. The heterogeneity of the endothelial cells of the rat large veins in terms of the connexin expression suggests that the endothelial cells are differently coupled in the large veins. The present data are useful for investigating, for example, disease-related alterations in expression of endothelial connexins in large veins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2–3
Fig. 4
Fig. 5–7

Similar content being viewed by others

References

  • Anderson JM, Stevenson BR, Jesaitis LA, Goodenough DA, Mooseker MS (1988) Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol 106:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Barker RJ, Price RL, Gourdie RG (2001) Increased co-localization of connexin43 and ZO-1 in dissociated adult myocytes. Cell Commun Adhes 8:205–208

    Article  PubMed  CAS  Google Scholar 

  • Barker RJ, Price RL, Gourdie RG (2002) Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions. Circ Res 90:317–324

    Article  PubMed  CAS  Google Scholar 

  • Beblo DA, Veenstra RD (1997) Monovalent cation permeation through the connexin40 gap junction channel. Cs, Rb, K, Na, Li, TEA, TMA, TBA, and effects of anions Br, Cl, F, acetate, aspartate, glutamate, and NO3. J Gen Physiol 109:509–522

    Article  PubMed  CAS  Google Scholar 

  • Beyer EC, Paul DL, Goodenough DA (1987) Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 105:2621–2629

    Article  PubMed  CAS  Google Scholar 

  • Beyer EC, Paul DL, Goodenough DA (1990) Connexin family of gap junction proteins. J Membr Biol 116:187–194

    Article  PubMed  CAS  Google Scholar 

  • Beyer EC, Reed KE, Westphale EM, Kanter HL, Larson DM (1992) Molecular cloning and expression of rat connexin40, a gap junction protein expressed in vascular smooth muscle. J Membr Biol 127:69–76

    PubMed  CAS  Google Scholar 

  • Brink PR, Cronin K, Banach K et al (1997) Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol 273:C1386–C1396

    PubMed  CAS  Google Scholar 

  • Bruzzone R, Haefliger JA, Gimlich RL, Paul DL (1993) Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell 4:7–20

    PubMed  CAS  Google Scholar 

  • Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238:1–27

    Article  PubMed  CAS  Google Scholar 

  • Chadjichristos CE, Kwak BR (2007) Connexins: new genes in atherosclerosis. Ann Med 39:402–411

    Article  PubMed  CAS  Google Scholar 

  • Davies PF, Mundel T, Barbee KA (1995) A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J Biomech 28:1553–1560

    Article  PubMed  CAS  Google Scholar 

  • de Wit C, Roos F, Bolz SS et al (2000) Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circ Res 86:649–655

    PubMed  Google Scholar 

  • de Wit C, Roos F, Bolz SS, Pohl U (2003) Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics 13:169–177

    PubMed  Google Scholar 

  • Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Article  PubMed  Google Scholar 

  • Elfgang C, Eckert R, Lichtenberg-Frate H et al (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129:805–817

    Article  PubMed  CAS  Google Scholar 

  • Eskin SG, Ives CL, McIntire LV, Navarro LT (1984) Response of cultured endothelial cells to steady flow. Microvasc Res 28:87–94

    Article  PubMed  CAS  Google Scholar 

  • Figueroa XF, Isakson BE, Duling BR (2006) Vascular gap junctions in hypertension. Hypertension 48:804–811

    Article  PubMed  CAS  Google Scholar 

  • Flagg-Newton J, Simpson I, Loewenstein WR (1979) Permeability of the cell-to-cell membrane channels in mammalian cell juncton. Science 205:404–407

    Article  PubMed  CAS  Google Scholar 

  • Gabriels JE, Paul DL (1998) Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 83:636–643

    PubMed  CAS  Google Scholar 

  • Giepmans BN, Moolenaar WH (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 8:931–934

    Article  PubMed  CAS  Google Scholar 

  • Giepmans BN, Verlaan I, Moolenaar WH (2001) Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin. Cell Commun Adhes 8:219–223

    Article  PubMed  CAS  Google Scholar 

  • Inai T, Mancuso M, Hashizume H et al (2004a) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52

    PubMed  CAS  Google Scholar 

  • Inai T, Mancuso MR, McDonald DM, Kobayashi J, Nakamura K, Shibata Y (2004b) Shear stress-induced upregulation of connexin 43 expression in endothelial cells on upstream surfaces of rat cardiac valves. Histochem Cell Biol 122:477–483

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita S (1993) The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 121:491–502

    Article  PubMed  CAS  Google Scholar 

  • Ko YS, Yeh HI, Rothery S, Dupont E, Coppen SR, Severs NJ (1999) Connexin make-up of endothelial gap junctions in the rat pulmonary artery as revealed by immunoconfocal microscopy and triple-label immunogold electron microscopy. J Histochem Cytochem 47:683–692

    PubMed  CAS  Google Scholar 

  • Koval M, Geist ST, Westphale EM et al (1995) Transfected connexin45 alters gap junction permeability in cells expressing endogenous connexin43. J Cell Biol 130:987–995

    Article  PubMed  CAS  Google Scholar 

  • Kwak BR, Mulhaupt F, Veillard N, Gros DB, Mach F (2002) Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 22:225–230

    Article  PubMed  CAS  Google Scholar 

  • Larson DM, Wrobleski MJ, Sagar GD, Westphale EM, Beyer EC (1997) Differential regulation of connexin43 and connexin37 in endothelial cells by cell density, growth, and TGF-beta1. Am J Physiol 272:C405–C415

    PubMed  CAS  Google Scholar 

  • Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Day KH, Damon DN, Duling BR (2001) Endothelial cell-specific knockout of connexin 43 causes hypotension and bradycardia in mice. Proc Natl Acad Sci USA 98:9989–9994

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Inai T, Nakamura K, Shibata Y (1999) Distribution of gap junction protein connexin 37 in smooth muscle cells of the rat trachea and pulmonary artery. Arch Histol Cytol 62:27–37

    Article  PubMed  CAS  Google Scholar 

  • Okuma A, Kuraoka A, Iida H, Inai T, Wasano K, Shibata Y (1996) Colocalization of connexin 43 and connexin 45 but absence of connexin 40 in granulosa cell gap junctions of rat ovary. J Reprod Fertil 107:255–264

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Goto T, Haranaka K et al (1986) Actions of tumor necrosis factor on cultured vascular endothelial cells: morphologic modulation, growth inhibition, and cytotoxicity. J Natl Cancer Inst 76:1113–1121

    PubMed  CAS  Google Scholar 

  • Simon AM, McWhorter AR (2002) Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev Biol 251:206–220

    Article  PubMed  CAS  Google Scholar 

  • Simon AM, Goodenough DA, Li E, Paul DL (1997) Female infertility in mice lacking connexin 37. Nature 385:525–529

    Article  PubMed  CAS  Google Scholar 

  • Stolpen AH, Guinan EC, Fiers W, Pober JS (1986) Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am J Pathol 123:16–24

    PubMed  CAS  Google Scholar 

  • Sun Q, Tang M, Pu J, Zhang S (2008) Pulmonary venous structural remodeling in a canine model of chronic atrial dilation due to mitral regurgitation. Can J Cardiol 24:305–308

    PubMed  CAS  Google Scholar 

  • Theis M, de Wit C, Schlaeger TM et al (2001) Endothelium-specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis 29:1–13

    Article  PubMed  CAS  Google Scholar 

  • Unwin PN, Zampighi G (1980) Structure of the junction between communicating cells. Nature 283:545–549

    Article  PubMed  CAS  Google Scholar 

  • van Kempen MJ, Jongsma HJ (1999) Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol 112:479–486

    Article  PubMed  Google Scholar 

  • Van Rijen H, van Kempen MJ, Analbers LJ et al (1997) Gap junctions in human umbilical cord endothelial cells contain multiple connexins. Am J Physiol 272:C117–C130

    PubMed  Google Scholar 

  • van Rijen HV, van Kempen MJ, Postma S, Jongsma HJ (1998) Tumour necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine 10:258–264

    Article  PubMed  Google Scholar 

  • Veenstra RD (1996) Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr 28:327–337

    Article  PubMed  CAS  Google Scholar 

  • Wang HZ, Veenstra RD (1997) Monovalent ion selectivity sequences of the rat connexin43 gap junction channel. J Gen Physiol 109:491–507

    Article  PubMed  CAS  Google Scholar 

  • White TW, Bruzzone R (1996) Multiple connexin proteins in single intercellular channels: connexin compatibility and functional consequences. J Bioenerg Biomembr 28:339–350

    Article  PubMed  CAS  Google Scholar 

  • Willecke K, Heynkes R, Dahl E et al (1991) Mouse connexin37: cloning and functional expression of a gap junction gene highly expressed in lung. J Cell Biol 114:1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Yeh HI, Dupont E, Coppen S, Rothery S, Severs NJ (1997) Gap junction localization and connexin expression in cytochemically identified endothelial cells of arterial tissue. J Histochem Cytochem 45:539–550

    PubMed  CAS  Google Scholar 

  • Yeh HI, Rothery S, Dupont E, Coppen SR, Severs NJ (1998) Individual gap junction plaques contain multiple connexins in arterial endothelium. Circ Res 83:1248–1263

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Nos. 11770008, 13670018, 16590146, 18590187, and 19390052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuichiro Inai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inai, T., Shibata, Y. Heterogeneous expression of endothelial connexin (Cx) 37, Cx40, and Cx43 in rat large veins. Anat Sci Int 84, 237–245 (2009). https://doi.org/10.1007/s12565-009-0029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-009-0029-y

Keywords

Navigation