Skip to main content
Log in

Incidental consumption of ephyrae of moon jellyfish Aurelia aurita s.l. by three filter-feeding sessile organisms: laboratory experiments

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Moon jellyfish Aurelia aurita s.l. has been suggested to have high mortality during the ephyra stage, which potentially affects the population size of the later medusa stage. However, the mechanism behind the high mortality rate has still not been clarified. Ephyrae of A. aurita are liberated from the sessile strobila, which are usually surrounded by filter-feeding sessile organisms. In the present study, we carried out a series of feeding trials at 10 °C, offering A. aurita ephyrae to three potential predatory filter-feeding sessile organisms: the mussel Mytilus galloprovincialis, the ascidian Styela plicata, and the barnacle Amphibalanus eburneus. From the experiments, the mussel was estimated to have the highest ability to consume ephyrae among the sessile organisms. Size-selective filtration experiments showed that the mussel consumed newly liberated ephyrae [3 mm total body diameter (TBD)] at a significantly higher efficiency than larger (5 and 7 mm TBD) ephyrae. Our results demonstrate that filter-feeding sessile organisms, especially the mussel, are potential consumers of the early ephyra stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huntley ME, Hobson LA (1978) Medusa predation and plankton dynamics in a temperate fjord, British Columbia. J Fish Res Board Can 35:257–261

    Article  Google Scholar 

  2. Möller H (1984) Reduction of a larval herring population by jellyfish predator. Science 224:621–622

    Article  PubMed  Google Scholar 

  3. Condon RH, Steinberg DK, del Giorgio PA et al (2011) Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Natl Acad Sci USA 108:10225–10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lebrato M, Pitt KA, Sweetman AK et al (2012) Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiologia 690:227–245

    Article  CAS  Google Scholar 

  5. Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Ann Rev Mar Sci 4:209–235

    Article  PubMed  Google Scholar 

  6. Condon RH, Duarte CM, Pitt KA et al (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proc Natl Acad Sci USA 110:1000–1005

    Article  CAS  PubMed  Google Scholar 

  7. Purcell JE, Uye S, Lo W-T (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174

    Article  Google Scholar 

  8. Gibbons MJ, Richardson AJ (2013) Beyond the jellyfish joyride and global oscillations: advancing jellyfish research. J Plankton Res 35:929–938

    Article  Google Scholar 

  9. Dawson MN, Martin LE (2001) Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451:259–273

    Article  Google Scholar 

  10. Uye S, Fujii N, Takeoka H (2003) Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku, Japan. Plankton Biol Ecol 50:17–21

    Google Scholar 

  11. Pagès F (2001) Past and present anthropogenic factors promoting the invasion, colonization and dominance by jellyfish of a Spanish coastal lagoon. In: Briand F (ed) Gelatinous zooplankton outbreaks: theory and practice. CIESM Workshop series 14. CIESM, Monaco, pp 59–71

    Google Scholar 

  12. Zaitsev Y, Mamaev V (1997) Biological diversity in the Black Sea: a study of change and decline. United Nations, New York

    Google Scholar 

  13. Kogovšek T, Bogunović B, Malej A (2010) Recurrence of bloom-forming scyphomedusae: wavelet analysis of a 200-year time series. Hydrobiologia 645:81–96

    Article  Google Scholar 

  14. Uye S (2011) Human forcing of the copepod–fish–jellyfish triangular trophic relationship. Hydrobiologia 666:71–83

    Article  Google Scholar 

  15. Dong Z, Liu D, Keesing JK (2010) Jellyfish blooms in China: dominant species, causes and consequences. Mar Pollut Bull 60:954–963

    Article  CAS  PubMed  Google Scholar 

  16. Liu W-C, Lo W-T, Purcell JE, Chang H-H (2009) Effects of temperature and light intensity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan. Hydrobiologia 616:247–258

    Article  Google Scholar 

  17. Han C-H, Uye S (2010) Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton Benthos Res 5:98–105

    Article  Google Scholar 

  18. Willcox S, Moltschaniwskyj NA, Crawford CM (2008) Population dynamics of natural colonies of Aurelia sp. scyphistomae in Tasmania, Australia. Mar Biol 154:661–670

    Article  Google Scholar 

  19. Thein H, Ikeda H, Uye S (2012) The potential role of podocysts in perpetuation of the common jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa) in anthropogenically perturbed coastal waters. Hydrobiologia 690:157–167

    Article  CAS  Google Scholar 

  20. Kakinuma Y (1975) An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. Bull Mar Biol Stn Asamushi 15:101–112

    Google Scholar 

  21. Custance DRN (1964) Light as an inhibitor of strobilation in Aurelia aurita. Nature 204:1219–1220

    Article  Google Scholar 

  22. Fu Z, Shibata M, Makabe R et al (2014) Body size reduction under starvation, and the point of no return, in ephyrae of the moon jellyfish Aurelia aurita. Mar Ecol Prog Ser 510:255–263

    Article  Google Scholar 

  23. Ishii H, Kojima S, Tanaka Y (2004) Survivorship and production of Aurelia aurita ephyrae in the innermost part of Tokyo Bay, Japan. Plankton Biol Ecol 51:26–35

    Google Scholar 

  24. Fuiman LA, Werner RG (2002) Fishery science: the unique contribution of early life stages. Blackwell Science, Oxford

    Google Scholar 

  25. Paschke KA, Gebauer P, Buchholz F, Anger K (2004) Seasonal variation in starvation resistance of early larval North Sea shrimp Crangon crangon (Decapoda: Crangonidae). Mar Ecol Prog Ser 279:183–191

    Article  Google Scholar 

  26. Cargo DG, Schultz LP (1967) Further observations on the biology of the sea nettle and jellyfishes in Chesapeake Bay. Chesapeake Sci 8:209–220

    Article  Google Scholar 

  27. Makabe R, Furukawa R (2014) Marine artificial structures as amplifiers of Aurelia aurita s.l. blooms: a case study of a newly installed floating pier. J Oceanogr 70:447–455

    Article  CAS  Google Scholar 

  28. Miyake H, Terazaki M, Kakinuma Y (2002) On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. J Oceanogr 58:451–459

    Article  Google Scholar 

  29. Straehler-Pohl I, Jarms G (2010) Identification key for young ephyrae: a first step for early detection of jellyfish blooms. Hydrobiologia 645:3–21

    Article  Google Scholar 

  30. Fujiwara S, Akima C, Nogata Y et al (2013) Bio-organic and anti-barnacle studies of fluorescence-labeled probe compounds against cyprids of barnacles. J Exp Mar Biol Ecol 445:88–92

    Article  CAS  Google Scholar 

  31. Toyokawa M, Aoki K, Yamada S et al (2011) Distribution of ephyrae and polyps of jellyfish Aurelia aurita (Linnaeus 1758) sensu lato in Mikawa Bay, Japan. J Oceanogr 67:209–218

    Article  Google Scholar 

  32. Harrison PJ, Conway HL, Holmes RW, Davis CO (1977) Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida. Mar Biol 43:19–31

    Article  CAS  Google Scholar 

  33. Uye S, Kayano Y (1994) Predatory feeding behavior of Tortanus forcipatus on three different prey. Bull Plankton Soc Japan 40:173–176

    Google Scholar 

  34. Coughlan J (1969) The estimation of filtering rate from the clearance of suspensions. Mar Biol 2:356–358

    Article  Google Scholar 

  35. Sokal RR, James FR (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New York

    Google Scholar 

  36. Bailey KM, Houde ED (1989) Predation on eggs and larvae of marine fishes and the recruitment problem. Adv Mar Biol 25:1–83

    Article  Google Scholar 

  37. Rumrill SS (1990) Natural mortality of marine invertibrate larvae. Ophelia 32:163–198

    Article  Google Scholar 

  38. Fuiman LA, Cowan JHJ, Smith ME, O’Neal JP (2005) Behavior and recruitment success in fish larvae: variation with growth rate and the batch effect. Can J Fish Aquat Sci 62:1337–1349

    Article  Google Scholar 

  39. Fuiman LA, Cowan JHJ (2003) Behavior and recruitment success in fish larvae: repeatability and covariation of survival skills. Ecology 84:53–67

    Article  Google Scholar 

  40. Kim YS, Moon TS (1998) Filtering rate with effect of water temperature and size of two farming ascidians Styela clava and S. plicata, and a farming mussel Mytilus edulis. J Korean Fish Soc 31:272–277 (in Korean with English abstract)

    Google Scholar 

  41. van Erkom Schurink C, Griffiths CL (1992) Physiological energetics of four South African mussel species in relation to body size, ration and temperature. Comp Biochem Physiol 101A:779–789

    Google Scholar 

  42. Fiala-Médioni A (1978) Filter-feeding ethology of benthic invertebrates (ascidians). III. Recording of water current in situ—rate and rhythm of pumping. Mar Biol 45:185–190

    Article  Google Scholar 

  43. Ren JS, Ross AH, Schiel DR (2000) Functional descriptions of feeding and energetics of the Pacific oyster Crassostrea gigas in New Zealand. Mar Ecol Prog Ser 208:119–130

    Article  Google Scholar 

  44. Bougrier S, Geairon P, Jonquikres G, Bather C (1995) Allometric relationships and effects of temperature on clearance and oxygen consumption rates of Crassostrea gigas (Thunberg). Aquaculture 134:143–154

    Article  Google Scholar 

  45. Randløv A, Riisgård HU (1979) Efficiency of particle retention and filtration rate in four species of ascidians. Mar Ecol Prog Ser 1:55–59

    Article  Google Scholar 

  46. Sullivan BK, Suchman CL, Costello JH (1997) Mechanics of prey selection by ephyrae of the scyphomedusa Aurelia aurita. Mar Biol 130:213–222

    Article  Google Scholar 

  47. Riisgård HU, Jørgensen BH, Lundgreen K et al (2011) The exhalant jet of mussels Mytilus edulis. Mar Ecol Prog Ser 437:147–164

    Article  Google Scholar 

  48. Wang N, Li C (2015) The effect of temperature and food supply on the growth and ontogeny of Aurelia sp. 1 ephyrae. Hydrobiologia 754:157–167

    Article  CAS  Google Scholar 

  49. Kuplik Z, Kerem D, Angel DL (2015) Regulation of Cyanea capillata populations by predation on their planulae. J Plankton Res 37:1068–1073

    Article  Google Scholar 

  50. Lo W-T, Purcell JE, Hung J-J et al (2008) Enhancement of jellyfish (Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. ICES J Mar Sci 65:453–461

    Article  Google Scholar 

  51. Lo WT, Chen IL (2008) Population succession and feeding of scyphomedusae, Aurelia aurita, in a eutrophic tropical lagoon in Taiwan. Estuar Coast Shelf Sci 76:227–238

    Article  Google Scholar 

  52. Ishii H, Katsukoshi K (2010) Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. J Oceanogr 66:329–336

    Article  Google Scholar 

Download references

Acknowledgments

We especially thank Ms. E. Yoshimura, Ms. K. Sato, Dr. T. Yoshimura and Dr. Y. Nakane for their cooperation with the laboratory experiments, Dr. M. Tomita for helpful advice on the statistical analysis, Mr. T. Yamashita, Mr. A. Yasuda, Mr. Y. Murata, and Mr. Y. Takami for helping with the sample collection and field observations, and Dr. M. L. Walsh for editing the English. We are also grateful to two anonymous reviewers for helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro S. Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, K.S., Kumakura, E. & Nogata, Y. Incidental consumption of ephyrae of moon jellyfish Aurelia aurita s.l. by three filter-feeding sessile organisms: laboratory experiments. Fish Sci 82, 923–930 (2016). https://doi.org/10.1007/s12562-016-1034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-016-1034-4

Keywords

Navigation