Skip to main content
Log in

Nonparametric Time-Varying Coefficient Models for Panel Data

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

The collection rate of contributions to public pension (CRCP), expressed as the ratio of the actual contributions to the expected contributions from insurers, is a key component of the public pension system in China. Recent years have seen various patterns of change in CRCPs at the provincial level. In order to study the drastic changes in a short time and understand their underlying implications, we propose a nonparametric time-varying coefficients model for longitudinal data with pre-specified finite time points, also known as panel data. By utilizing a penalized least squares method, the proposed method enables estimation of a large number of parameters, which can exceed the sample size. The resulting estimator is shown to be efficient, robust, and computationally feasible. Furthermore, it possesses desirable theoretical properties such as \(n^{1/2}\)-consistency, asymptotic normality, and the oracle property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cai Z (2007) Trending time-varying coefficient time series models with serially correlated errors. J Economet 136:163–188

    MathSciNet  MATH  Google Scholar 

  2. Cai Z, Sun Y (2003) Local linear estimation for time-dependent coefficients in Cox’s regression models. Scand J Stat 30:93–111

    MathSciNet  MATH  Google Scholar 

  3. Cai Z, Fan J, Yao Q (2000) Functional-coefficient regression models for nonlinear time series models. J Am Stat Assoc 95:941–956

    MathSciNet  MATH  Google Scholar 

  4. Chen R, Tsay RS (1993) Functional-coefficient autoregressive models. J Am Stat Assoc 88:298–308

    MathSciNet  MATH  Google Scholar 

  5. Chen K, Lin H, Zhou Y (2012) Efficient estimation for the Cox model with varying coefficients. Biometrika 99:379–392

    MathSciNet  MATH  Google Scholar 

  6. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression (with discussion). Ann Stat 32:407–499

    MATH  Google Scholar 

  7. Fan J, Gijbels I (1996) Local polynomial modeling and its applications. Chapman and Hall, London

    MATH  Google Scholar 

  8. Fan J, Zhang W (1999) Statistical estimation in varying coefficient models. Ann Stat 27:1491–1518

    MathSciNet  MATH  Google Scholar 

  9. Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    MathSciNet  MATH  Google Scholar 

  10. Fan J, Yao Q (2003) Nonlinear time series: nonparametric and parametric methods. Springer, New York

    MATH  Google Scholar 

  11. Fan J, Zhang JT (2000) Two-Step estimation of functional linear models with applications to longitudinal data. J R Stat Soc B 62:303–322

    MathSciNet  Google Scholar 

  12. Fan J, Lin H, Zhou Y (2006) Local partial likelihood estimation for life time data. Ann Stat 34:290–325

    MATH  Google Scholar 

  13. Fan J, Huang T, Li R (2007) Analysis of longitudinal data with semiparametric estimation of covariance function. J Am Stat Assoc 102:632–641

    MATH  Google Scholar 

  14. Feng J, He L, Satob H (2011) Public pension and household saving: evidence from urban China. J Comp Econ 39:470–485

    Google Scholar 

  15. Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer series in statistics. Springer, New York

    MATH  Google Scholar 

  16. Gamerman D (1991) Markov chain Monte Carlo for dynamic generalized linear models. Biometrika 85:215–227

    MATH  Google Scholar 

  17. Gao Q (2010) Redistributive nature of the Chinese social benefit system: progressive or regressive? China Q 201:1–19

    Google Scholar 

  18. Gillion C (2000) Social security pensions: development and reform. International Labour Organisation, Geneva

    Google Scholar 

  19. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    MATH  Google Scholar 

  20. Hastie T, Tibshirani R (1993) Varying-coefficient models (with discussion). J R Stat Soc B 55:757–796

    MATH  Google Scholar 

  21. Hess W, Persson M, Rubenbauer S, Gertheiss J (2013) Using lasso-type penalties to model time-varying covariate effects in panel data regressions-a novel approach illustrated by “Death of Distance” in international trade. Working Paper

  22. Hoover DR, Rice JA, Wu CO, Yang LP (1998) Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85:809–822

    MathSciNet  MATH  Google Scholar 

  23. Huang J, Shen H (2004) Functional coefficient regression models for non-linear time series: a polynomial spline approach. Scand J Stat 31:515–534

    MathSciNet  MATH  Google Scholar 

  24. Hunter DR, Li R (2005) Variable selection using MM algorithms. Ann Stat 33:1617–1642

    MathSciNet  MATH  Google Scholar 

  25. Li DG, Chen J, Gao JT (2011) Non-parametric time-varying coefficient panel data models with fixed effects. Econ J 14:387–408

    MathSciNet  MATH  Google Scholar 

  26. Lin DY, Ying Z (2001) Semiparametric and nonparametric regression analysis of longitudinal data (with discussion). J Am Stat Assoc 96:103–113

    MATH  Google Scholar 

  27. Lin H, Peng H (2013) Smoothed rank correlation of the linear transformation regression model. Comput Stat Data Anal 57(1):615–630

    MathSciNet  MATH  Google Scholar 

  28. Lin H, Song XK, Zhou Q (2007) Varying-coefficient marginal models and applications in longitudinal data analysis. Sankhya 69:581–614

    MathSciNet  MATH  Google Scholar 

  29. Lin H, Zhou L, Peng H, Zhou XH (2011) Selection and combination of biomarkers using ROC method for disease classification and prediction. Can J Stat 39(2):324–343

    MathSciNet  MATH  Google Scholar 

  30. Liu J (2011) Resources, incentives and sectoral interests: a longitudinal study of the system of collecting social insurance contributions in China (1999–2008). Soc Sci China 3:9

    Google Scholar 

  31. Martinussen T, Scheike TH, Skovgaard IM (2000) Efficient estimation of fixed and time-varying covariates effects in multiplicative intensity models. Scand J Stat 29:57–74

    MathSciNet  MATH  Google Scholar 

  32. Marzec L, Marzec P (1997) On fitting Cox’s regression model with time-dependent coefficients. Biometrika 84:901–908

    MathSciNet  MATH  Google Scholar 

  33. Murphy SA (1993) Testing for a time dependent coefficient in Cox’s regression model. Scand J Stat 20:35–50

    MathSciNet  MATH  Google Scholar 

  34. Murphy SA, Sen PK (1991) Time-dependent coefficients in a Cox-type regression model. Stoch Process Appl 39(1):153–180

    MathSciNet  MATH  Google Scholar 

  35. Nielsen I, Smyth R (2008a) Job satisfaction and response to incentives among China’s urban workforce. J Socio Econ 37:1921–1936

    Google Scholar 

  36. Nielsen I, Smyth R (2008b) Who bears the burden of employer compliance with social security contributions? Evidence from Chinese firm level data. China Econ Rev 19:230–244

    Google Scholar 

  37. Nyland C, Smyth R, Zhu J (2006) What determines the extent to which employers will comply with their social security obligations? Evidence from Chinese firm-level data. Soc Policy Admin 40:196–214

    Google Scholar 

  38. Olsen MK, Schafer J (2001) A two-part random-effects model for semi-continuous longitudinal data. J Am Stat Assoc 96:730–745

    MATH  Google Scholar 

  39. Orbe S, Ferreira E, Rodriguez-Poo J (2005) Nonparametric estimation of time varying parameters under shape restrictions. J Economet 126:53–57

    MathSciNet  MATH  Google Scholar 

  40. Palacios R, Pallares-Miralles M (2000) International patterns of pension provision. Social Protection Discussion Paper Series No. 0009. The World Bank, Washington, DC

    Google Scholar 

  41. Phillips P (2001) Trending time series and macroeconomic activity: some present and future challenges. J Economet 100:21–27

    MathSciNet  MATH  Google Scholar 

  42. Qian J, Wang L (2012) Estimating semiparametric panel data models by marginal integration. J Economet 167:483–493

    MathSciNet  MATH  Google Scholar 

  43. Queisser M, Reilly A, Hu Y (2016) China’s pension system and reform: an OECD perspective. Econ Political Stud 4:345–367

    Google Scholar 

  44. Ramsay JO, Silverman BW (1997) Functional data analysis. Springer, New York

    MATH  Google Scholar 

  45. Roberts S, Stafford B, Ashworth, K (2004) Assessing the coverage gap. ISSA initiative findings and opinions. 12

  46. Robinson PM (1989) Nonparametric estimation of time-varying parameters. Statistical analysis and forecasting of economic structural change. Springer, Berlin, pp 253–264

    Google Scholar 

  47. Robinson PM (1991) Time-varying nonlinear regression. Economic structure change. Springer, Berlin, pp 179–190

    Google Scholar 

  48. Robinson PM (2012) Nonparametric trending regression with cross-sectional dependence. J Economet 169(1):4–14

    MathSciNet  MATH  Google Scholar 

  49. Rodriguez-Poo J, Soberon A (2014) Direct semi-parametric estimation of fixed effects panel data varying coefficient models. Econ J 17:107–138

    MathSciNet  Google Scholar 

  50. Stanovnik T, Bejakovic P, Chlon-Dominczak A (2015) The collection of pension contributions: a comparative review of three Central European countries. Econ Res Ekon Istraz 28:1149–1161

    Google Scholar 

  51. Sun YG, Carroll RJ, Li DD (2009) Semiparametric estimation of fixed effects panel data varying coeffcient models. Adv Econom 25:101–129

    MATH  Google Scholar 

  52. Tian L, Zucker D, Wei LJ (2005) On the Cox model with time-varying regression coefficients. J Am Stat Assoc 100:172–183

    MathSciNet  MATH  Google Scholar 

  53. Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc B 58:267–288

    MathSciNet  MATH  Google Scholar 

  54. Wang H, Li R, Tsai C (2007) Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94:553–568

    MathSciNet  MATH  Google Scholar 

  55. Wu CO, Chiang CT, Hoover DR (1998) Asymptotic confidence regions for kernel smoothing of a varying coefficient model with longitudinal data. J Am Stat Assoc 93:1388–1402

    MathSciNet  MATH  Google Scholar 

  56. Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38:894–942

    MathSciNet  MATH  Google Scholar 

  57. Zou H (2006) The adaptive Lasso and its oracle properties. J Am Stat Assoc 101:1418–1429

    MathSciNet  MATH  Google Scholar 

  58. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc B 67(2):301–320

    MathSciNet  MATH  Google Scholar 

  59. Zou H, Li R (2008) One-step sparse estimates in nonconcave penalized likelihood models. Ann Stat 36:1509–1533

    MathSciNet  MATH  Google Scholar 

  60. Zucker DM, Karr AF (1990) Nonparametric survival analysis with time-dependent covariate effects: a penalized partial likelihood approach. Ann Stat 18:329–353

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the Editor, the AE, and two referees for the helpful suggestions that helped improve much the manuscript. The research is partially supported by the National Natural Science of China (No. 11829101, 11571282) and the Fundamental Research Funds for the Central Universities (JBK120509, JBK140507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Appendices

Appendix

Proof of Theorem 1

Let \(\alpha _n=n^{-1/2}+a_n\). Denote by \(\theta _0\) the true value of \(\theta \). We want to show that for any given \(\varepsilon >0\), there exists a large constant C such that

$$\begin{aligned} \text{ Pr }\left\{ \inf \limits _{\Vert u\Vert =C} L_n(\theta _0+ \alpha _n \cdot u) > L_n(\theta _0) \right\} \ge 1-\varepsilon . \end{aligned}$$
(5.1)

This implies with a probability larger than \(1-\varepsilon \) that there exists a local minimum in the ball \( \{\theta _0+ \alpha _n \cdot u: \Vert u\Vert \le C\}.\) Hence, there exists a local minimizer such that \(\Vert {\widehat{\theta }}-\theta _0\Vert =O_p(\alpha _n)\).

Define \(\theta ^{*}=\theta _0 + \alpha _n \cdot u=(\theta _1^{*},\ldots ,\theta _{Tp+T-1}^{*})^{\prime }\), using \(p_{\lambda }(0)=0\), we have

$$\begin{aligned} D_n(\theta ^{*})= L_n(\theta ^{*} ) - L_n(\theta _0) \ge S (\theta ^{*}) -S(\theta _0)+ \sum \limits _{j=1}^{m} \{p_{\lambda }(|\theta ^{*}_{j}|)-p_{\lambda }(|\theta _{j0}|)\}, \end{aligned}$$

where \(S(\theta )=\frac{1}{n}\sum _{i=1}^{n}\sum _{t>s}\Big \{Y_{it} -Y_{is}-\sum _{d=s+1}^t g_d-\sum _{j=1}^p\Big (\sum _{d=1}^t \gamma _{dj}X_{it,j}-\sum _{d=1}^s \gamma _{dj}X_{is,j}\Big ) \Big \}^2\), m is the number of components of \(\theta ^{(1)}_0\). Let \({\dot{S}}\) be the gradient vector of S; by the standard argument of the Taylor expansion, we have

$$\begin{aligned} D_n(\theta ^{*})\ge & {} {\dot{S}}(\theta _0)^{\prime }(\theta ^{*}-\theta _0) +(\theta ^{*}-\theta _0)^{\prime } \ddot{S}(\theta _0)(\theta ^{*} -\theta _0)\{1+o_p(1)\}\nonumber \\&+\sum \limits _{j=1}^m [{\dot{p}}_{\lambda }(|\theta _{j0}|) \text{ sgn }(\theta _{j0})(\theta _{j}^{*}-\theta _{j0}) +\ddot{p}_{\lambda }(|\theta _{j0}|)\left( \theta _{j}^{*} -\theta _{j0}\right) ^2\{1+o(1)\}]\nonumber \\&\widehat{=}&I_1+I_2+I_3. \end{aligned}$$
(5.2)

Noting that \(E\{{\dot{S}}(\theta _0)\}=0\) and \(Var\{{\dot{S}}(\theta _0)\}=O(n^{-1})\), by the central limit theory we have

$$\begin{aligned} I_1 = \left\{ E\{{\dot{S}}(\theta _0)\} +O_p\left( \sqrt{\text{ Var }({\dot{S}}(\theta _0)}\right) \right\} (\theta ^{*}-\theta _0) =O_p \left( \frac{\alpha _n}{\sqrt{n}}\right) . \end{aligned}$$
(5.3)

Similarly, we get

$$\begin{aligned} I_2 =O(\alpha _n^2C^2). \end{aligned}$$
(5.4)

For \(I_3\), it is easy to see that it is bounded by

$$\begin{aligned} m\alpha _n a_n C+\alpha _n^2 \max \{|\ddot{p}_{\lambda } (|\theta _{j0}|)|:|\theta _{j0}| \ne 0\}C^2. \end{aligned}$$
(5.5)

From (5.3), (5.4), and (5.5), \(I_1\) and \(I_3\) are dominated by \(I_2\). Hence, by choosing a sufficiently large C, (5.1) holds. \(\square \)

Proof of Theorem 2

We first show that with a probability tending to 1, for any given \(\theta ^{(1)}\) satisfying \(\Vert \theta ^{(1)}-\theta ^{(1)}_0\Vert =O_p(n^{-1/2})\) and any constant C,

$$\begin{aligned} L_n(({\theta ^{(1)}}',{0'})')=\min \limits _{\Vert \theta ^{(2)}\Vert \le Cn^{-1/2}} L_n(({\theta ^{(1)}}',{\theta ^{(2)}}')'). \end{aligned}$$
(5.6)

To show (5.6), by Taylor’s expansion, we have

$$\begin{aligned} \frac{\partial L_n(\theta )}{\partial \theta _r}= & {} -\frac{2}{n}\sum _{i=1}^{n}\sum _{t>s}\left\{ Y_{it} -Y_{is}-\sum _{d=s+1}^t g_d-\sum _{j=1}^p\left( \sum _{d=1}^t\gamma _{dj}X_{it,j} -\sum _{d=1}^s \gamma _{dj}X_{is,j}\right) \right\} \nonumber \\&\times \frac{\partial }{\partial \theta _r}\left\{ \sum _{d=s+1}^t g_d+\sum _{j=1}^p\left( \sum _{d=1}^t \gamma _{dj}X_{it,j}-\sum _{d=1}^s \gamma _{dj}X_{is,j}\right) \right\} \\&+{\dot{p}}_{\lambda }(|\theta _r|) \text{ sgn }(\theta _r). \end{aligned}$$

By the central limit theorem, we have

$$\begin{aligned} \frac{\partial L_n(\theta )}{\partial \theta _r} =\lambda \{-\lambda ^{-1}{\dot{p}}_{\lambda }(|\theta _r|) \text{ sgn }(\theta _r)+O_p(n^{-1/2}/\lambda )\}, \end{aligned}$$

where \(\liminf \limits _{n\rightarrow \infty }\liminf \limits _{\theta \rightarrow 0^{+}} \lambda ^{-1}{\dot{p}}_{\lambda }(\theta )>0\) and \(n^{-1/2}/\lambda \rightarrow 0\). The sign of the derivative is completely determined by that of \(\theta _r\). Hence (5.6) follows.

By (5.6), Part (a) follows. Now we prove Part (b). It can be shown that there exists \({\widehat{\theta }}^{(1)}\) in Theorem 1 that is a \(n^{1/2}\)- consistent local maximizer of \(L_n(({\theta ^{(1)}}', 0')')\), which is regarded as a function of \(\theta ^{(1)}\), and that satisfies the following equation:

$$\begin{aligned} \frac{\partial L_n(\theta )}{\partial \theta _r}\Bigg |_{\theta =({\theta }^{(1)},0)^{\prime }} =0, \qquad \text{ for } \quad r=1,\ldots ,m. \end{aligned}$$

Note that \({\widehat{\theta }}^{(1)}\) is a constant estimator. Thus, we have

$$\begin{aligned} 0= & {} \frac{\partial L_n(\theta )}{\partial \theta _r}\Bigg |_{\theta =({\theta }^{(1)},0)^{\prime }}= \frac{S(\theta )}{\partial \theta _r} \Bigg |_{\theta =({\theta }^{(1)},0)^{\prime }}+{\dot{p}}_{\lambda } (|{\widehat{\theta }}_r|)\text{ sgn }({\widehat{\theta }}_r) \\= & {} \frac{\partial S(\theta _0)}{\partial \theta _r}+\sum \limits _{l=1}^m \left\{ \frac{\partial ^2 S(\theta _0)}{\partial \theta _r \theta _l}+o(1) \right\} ({\widehat{\theta }}_l-\theta _{l0})\\&+{\dot{p}}_{\lambda }(|\theta _{r0}|)\text{ sgn }(\theta _{r0}) +\{\ddot{p}_{\lambda }(|\theta _{r0}|) +o_p(1)\}({\widehat{\theta }}_r-\theta _{r0}). \end{aligned}$$

Furthermore, we have

$$\begin{aligned} \frac{\partial ^2 S(\theta _0)}{\partial \theta ^{(1)}\partial {\theta ^{(1)}}^{\prime }}= 2\varLambda (1+o_p(1)), \end{aligned}$$

where

$$\begin{aligned} \varLambda =\lim _{n\rightarrow \infty } \frac{1}{n}\sum _{i=1}^{n} \sum _{t>s} \left[ \frac{\partial }{\partial \theta ^{(1)}} \left\{ \sum _{d=s+1}^t g_d+\sum _{j=1}^p \left( \sum _{d=1}^t \gamma _{dj}X_{it,j}-\sum _{d=1}^s \gamma _{dj}X_{is,j}\right) \right\} \right] ^{\otimes 2}\big |_{\theta =\theta _0}. \end{aligned}$$

Hence following by Slutsky’s theorem we have

$$\begin{aligned} \sqrt{n}(2\varLambda +\varSigma )\left\{ {\widehat{\theta }}^{(1)} -\theta ^{(1)}_0+(2\varLambda +\varSigma )^{-1}{b}\right\} = \sqrt{n}\frac{\partial S(\theta _0)}{\partial \theta ^{(1)}}+o_p(1). \end{aligned}$$

This completes the proof of Part (b). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Hong, H.G., Yang, B. et al. Nonparametric Time-Varying Coefficient Models for Panel Data. Stat Biosci 11, 548–566 (2019). https://doi.org/10.1007/s12561-019-09248-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-019-09248-0

Keywords

Navigation