Skip to main content
Log in

A Cognitive Information-Based Decision-Making Algorithm Using Interval-Valued q-Rung Picture Fuzzy Numbers and Heronian Mean Operators

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The complexity of the socioeconomic environment means that it is challenging to make decisions that rely on cognitive information. Decision makers normally cannot obtain a precise or sufficient level of knowledge about the problem domain and hence must provide multiple answers with interval values to depict them. This makes cognizing and decision making very difficult. To address this issue, this paper proposes a novel cognitive information-based decision-making algorithm with interval-valued q-rung picture fuzzy (IVq-RPtF) numbers. We first define the concept of the IVq-RPtF set, including the basic definition, operational laws, a score function, and an accuracy function. Considering the interrelationship between attributes, we then present the IVq-RPtF Heronian mean (IVq-RPtFHM) operators using the new operational laws. Moreover, we discuss the properties of IVq-RPtFHM operators, such as monotonicity, commutativity, and idempotency. Finally, we use a numerical example to verify the viability of the proposed method. The results show that the proposed method effectively expresses multiple types of interval cognitive information. The sensitivity analysis of the parameters shows that the ranking results are susceptible to parameter changes, but regardless of how the parameters change, the score values of the four alternatives in our example are in the range of [1.27, 1.66], within the basic scoring range of [1.352–1.472] for the four alternatives. Therefore, our proposed method based on IVq-RPtFHM operators has a stronger information aggregation ability than other methods. Compared with other methods, the proposed cognitive information-based decision-making algorithm is more widely applicable, avoids loss of cognitive information, and conducts a reasonable decision-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carneiro J, Conceição L, Martinho D, Marreiros G, Novais P. Including cognitive aspects in multiple criteria decision analysis. Ann Oper Res. 2018;265:269-291.

  2. Lourdes MB, Fernando MA, Jorge MB, et al. Complexity and cognitive computing. Proceedings of the 11th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems: Methodology and Tools in Knowledge-based Systems. London, UK: Springer-Verlag, 1998: 408-417.

  3. Valiant LG. Cognitive computation. Foundations of Computer Science, 1995. Proceedings Milwaukee, WI, USA; 1995. 2-3.

  4. Dubois D, Prade H. Fuzzy sets and systems: theory and applications Academic Press New York. 1980.

  5. Shivhare R, Cherukuri AK, Li J. Establishment of cognitive relations based on cognitive informatics. Cogn Comput 9. 2017;5:721-729.

  6. Zadeh LA. Fuzzy sets. Inform Control. 1965;8:338-353.

  7. Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Set Syst. 1986;20:87-96.

  8. Atanassov KT, Gargov G. Fuzzy Set Syst. 1989;31:(3)343-349.

  9. Coker D. Fuzzy rough sets are intuitionistic L-fuzzy sets. Fuzzy Set Syst. 1998;96(3): 381-383.

  10. Hesitant TV, Sets F. Int J Intell Syst. 2010;25(6):529-539.

  11. Zhu B, Xu Z. Xia M. Dual Hesitant Fuzzy Sets. J Appl Math. 2012, 879629.

  12. Xu Z. Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst. 2007;15(6):1179-1187.

  13. Xu Z, Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst. 2006;35(4):417-433.

  14. Wang X. Fuzzy number intuitionistic fuzzy arithmetic aggregation operators. Int J Fuzzy Syst. 2008;10(2):104-111.

  15. Xia M, Xu Z. Hesitant fuzzy information aggregation in decision making. Int J Approx Reason. 2011;52(3):395-407.

  16. Zeng ZS, Luo DD, Zhang CH, Li XS. A correlation-based TOPSIS method for multiple attribute decision making with single-valued neutrosophic information. Int J Inf Tech Decis. 2020;19(1):343-358.

  17. Azadeh A, Ghaderi SF, Pashapour S. A unique fuzzy multivariate modeling approach for performance optimization of maintenance workshops with cognitive factors. Int J Adv Manuf Tech. 2017;1(4):499-525.

  18. You X, He X, Han X. A novel solution to the cognitive radio decision engine based on improved multi-objective artificial bee colony algorithm and fuzzy reasoning. Intell Autom Soft Co. 2017;23(4):643-651.

  19. Han Y, Lu Z, Du Z. A YinYang bipolar fuzzy cognitive TOPSIS method to bipolar disorder diagnosis. Comput Meth Prog Bio. 2018;158(1):1-10.

  20. Khodadadi M, Shayanfar H, Maghooli K. Fuzzy cognitive map based approach for determining the risk of ischemic stroke. IET Syst Biol. 2019;13(6):297-304.

  21. Chen X, Liu X, Qin Y. An extended CREAM model based on analytic network process under the type-2 fuzzy environment for human reliability analysis in the high-speed train operation. Qual Reliab Eng Int. 2020, early access

  22. Jiang L, Liao H. Cognitive fuzzy sets for decision making. Appl Soft Comput. 2020;93: 106374.

  23. Zare A, Malakoutikhah M, Alimohammadlou M. Selecting lighting system based on workers' cognitive performance using fuzzy best-worst method and QUALIFLEX. Cogn Technol Work. 2020;22(3):641-652.

  24. Liang D, Dai Z, Wang M, et al. Web celebrity shop assessment and improvement based on online review with probabilistic linguistic term sets by using sentiment analysis and fuzzy cognitive map. Fuzzy Optim Decis Ma. 2020; early access.

  25. Liao H, Wu X, Mi X. An integrated method for cognitive complex multiple experts multiple criteria decision making based on ELECTRE III with weighted Borda rule OMEGA. Int J Mange S. 2020;93:102052.

  26. Tchupo DE, Kim JH, Macht GA. Fuzzy cognitive maps (FCMs) for the analysis of team communication. Appl Ergon. 2020;83:102979.

  27. Zeng SZ, Peng XM, Baležentis T, Streimikiene D. Prioritization of low-carbon suppliers based on Pythagorean fuzzy group decision making with self-confidence level. Econ Res Ekon Istraživanja. 2019;32(1):1073-1087.

  28. Yager RR. Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst. 2014;22:958-965.

  29. Yager RR. Generalized orthopair fuzzy sets. IEEE Trans Fuzzy Syst. 2016;25(5):1222-1230.

  30. Gao J, Liang ZL, Shang J, Xu ZS. Continuities, derivatives, and differentials of q-rung orthopair Fuzzy Functions. IEEE Trans Fuzzy Syst. 2019;27(8):1687–99.

    Article  Google Scholar 

  31. Wang J, Wei GW, Wei C, Wei Y. Dual hesitant q-rung orthopair fuzzy Muirhead mean operators in multiple attribute decision making. IEEE Access. 2019;7:67139-67166.

  32. Yang Z, Garg H, Li J, Srivastavad G, Cao Z. Investigation of multiple heterogeneous relationships using a q-rung orthopair fuzzy multi-criteria decision algorithm, Neural Comput Appl. 2020, early access.

  33. Liu PD, Wang P. Multiple-attribute decision-making based on Archimedean Bonferroni operators of q-rung orthopair fuzzy numbers. IEEE Trans Fuzzy Syst. 2019;27(5):834-848.

  34. Yang Z, Ouyang T, Fu X, Peng X. A decision-making algorithm for online shopping using deep-learning–based opinion pairs mining and q-rung orthopair fuzzy interaction Heronian mean operators. Int J Intell Syst. 2020;35(5):783-825.

  35. Ju YB, Luo C, Ma J, Gao HX, Gonzalez E, Wang AH. Some interval-valued q-rung orthopair weighted averaging operators and their applications to multiple-attribute decision making. Int J Intell Syst. 2019;34(10):2584-2606.

  36. Wang J, Gao H, Wei GW, Wei Y. Methods for multiple-attribute group decision making with q-rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers. Symmetry-Basel. 2019;11(1): Art No 56.

  37. Xu Y, Shang XP, Wang J, Zhao HM, Zhang RT,  Bai KY. Some interval-valued q-rung dual hesitant fuzzy Muirhead mean operators with their application to multi-attribute decision-making. IEEE Access. 2019;7:54724-54745.

  38. Cuong BC, Kreinovich V. Picture fuzzy Sets-a new concept for computational intelligence problems Third World Congress on Information and Communication Technologies (Wict) 2013; 1-6.

  39. Cuong BC. Picture fuzzy sets-first results Part 1 Seminar “neuro-fuzzy systems with applications”. J Comput Sci Cybernetics. 2014;4:409-420.

  40. Singh P. Correlation coefficients for picture fuzzy sets. J Intell Fuzzy Systs. 2015;28(2):591-604.

  41. Son LH. Generalized picture distance measure and applications to picture fuzzy clustering. Appl Soft Comput. 2016;46:284-295.

  42. Peng XD, Dai JG. Algorithm for picture fuzzy multiple attribute decision-making based on new distance measure. Int J Uncertain Quan. 2017;7(2):177-187.

  43. Bo CX, Zhang XH. New operations of picture fuzzy relations and fuzzy comprehensive evaluation. Symmetry-Basel. 2017;9(11):268.

  44. Wei GW.  Some similarity measures of picture fuzzy sets and their applications. Iran J Fuzzy Syst. 2018;15(1):77-89.

  45. Garg H. Some picture fuzzy aggregation operators and their applications to Multicriteria decision-making. Arab J Sci Eng. 2017;42(12):5275-5290.

  46. Wei GW. Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Fund Inform. 2018;157(3):271-320.

  47. Son LH. DPFCM: a novel distributed picture fuzzy clustering method on picture fuzzy sets. Expert Syst Appl. 2015;42(1):51-66.

  48. Thong PH, Son LH. A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality. Knowl-Based Syst. 2016;109:48-60.

  49. Wang L, Peng JJ, Wang JQ. A multi-criteria decision-making framework for risk ranking of energy performance contracting project under picture fuzzy environment. J Clean Prod. 2018;191:105-118.

  50. Ju YB, Ju DW, Gonzalez E, Giannakis M, Wang AH. Study of site selection of electric vehicle charging station based on extended GRP method under picture fuzzy environment. Comput Ind Eng. 2019;135:1271-1285.

  51. He JH, Wang XD, Zhang RT, Li L. Some q-rung picture fuzzy Dombi Hamy mean operators with their application to project assessment. Mathematics. 2019;7(5):Art No 468.

  52. Sykora S. Mathematical means and average: generalized Heronian means. Sykora S Stan’s Library. 2009.

Download references

Funding

This work was supported in part by the Natural Science Foundation of China (No. 71704007, 71802012), the Beijing Social Science Foundation of China (No. 18GLC082), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. 2017103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Qi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Appendices

Appendix 1

  1. (1)

    The addition operation of IVq-ROFNs. We need to perform addition operations for the interval MEBDs and NMEBDs of IVq-ROFNs. Specifically, the addition operation between the lower bounds of the MEBDs is \(\left( {\left( {u_{1}^{L} } \right)^{q} + \left( {u_{2}^{L} } \right)^{q} - \left( {u_{1}^{L} } \right)^{q} \left( {u_{2}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), and the addition operation between the upper bounds of the MEBDs is \(\left( {\left( {u_{1}^{U} } \right)^{q} + \left( {u_{2}^{U} } \right)^{q} - \left( {u_{1}^{U} } \right)^{q} \left( {u_{2}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\). Similarly, the addition between the lower bounds of the NMEBDs is \(v_{1}^{L} v_{2}^{L}\), and that between the upper bounds of the MEBDs is \(v_{1}^{U} v_{2}^{U}\). Then, we obtain the addition operation of IVq-ROFNs as follows:

    $$A_1 \oplus A_2 = \begin{pmatrix} \begin{aligned} &\begin{bmatrix} \left( \left(u^L_1\right)^q + \left(u^L_2\right)^q - \left(u^L_1\right)^q \left(u^L_2\right)^q \right)^{1 \left / \right. q}, \\ \left( \left(u^U_1\right)^q + \left(u^U_2\right)^q - \left(u^U_1\right)^q \left(u^U_2\right)^q \right)^{1 \left / \right. q} \end{bmatrix} \\ & \left[v^L_1 v^L_2, v^U_1 v^U_2 \right] \end{aligned} \end{pmatrix},$$
  2. (2)

    The product operation of IVq-ROFNs. We also need to determine the product operations of the interval MEBDs and NMEBDs of IVq-ROFNs. The product between the lower bounds of the MEBDs is \(u_{1}^{L} u_{2}^{L}\) and the corresponding product between the upper bounds is \(u_{1}^{U} u_{2}^{U}\). The product between the lower bounds of the NMEBDs is \(\left( {\left( {v_{1}^{L} } \right)^{q} + \left( {v_{2}^{L} } \right)^{q} - \left( {v_{1}^{L} } \right)^{q} \left( {v_{2}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), and the product between the upper bounds is \(\left( {\left( {v_{1}^{U} } \right)^{q} + \left( {v_{2}^{U} } \right)^{q} - \left( {v_{1}^{U} } \right)^{q} \left( {v_{2}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\). Then, we can obtain the product operation of IVq-ROFNs as follows:

    $$A_1 \otimes A_2 = \begin{pmatrix} \begin{aligned} &\left[ u^L_1 u^L_2, u^U_1 u^U_2 \right], \\ &\begin{bmatrix} \left( \left(v^L_1\right)^q + \left(v^L_2\right)^q - \left(v^L_1\right)^q \left(v^L_2\right)^q \right)^{1 \left / \right. q}, \\ \left( \left(v^U_1\right)^q + \left(v^U_2\right)^q - \left(v^U_1\right)^q \left(v^U_2\right)^q \right)^{1 \left / \right. q} \end{bmatrix}\\ \end{aligned} \end{pmatrix},$$
  3. (3)

    The scalar multiplication of IVq-ROFNs. Similarly, the scalar multiplication between the lower bounds of the MEBDs is \(\left( {1 - \left( {1 - \left( {u_{1}^{L} } \right)^{q} } \right)^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), the corresponding scalar multiplication between the upper bounds is \(\left( {1 - \left( {1 - \left( {u_{1}^{U} } \right)^{q} } \right)^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), the scalar multiplication between the lower bounds of the NMEBDs is \(\left( {v_{1}^{L} } \right)^{\lambda }\), and the scalar multiplication between the upper bounds is \(\left( {v_{1}^{U} } \right)^{\lambda }\). Then, we can obtain the scalar multiplication of IVq-ROFNs as follows:

    $$\lambda A_1 = \begin{pmatrix} \begin{aligned} &\begin{bmatrix} \left( 1 - \left(1 - \left( u^L_1 \right)^q\right)^\lambda \right)^{1 \left / \right.q} \\ \left( 1 - \left(1 - \left( u^U_1 \right)^q\right)^\lambda \right)^{1 \left / \right.q} \end{bmatrix} \\ & \left[ \left(v ^L_1\right)^\lambda , \left(v^U_1 \right)^\lambda \right]\end{aligned}\end{pmatrix},$$
  4. (4)

    The power operation of IVq-ROFNs. Similar to the above three operational rules, the power operation between the lower bounds of the MEBDs is \(\left( {u_{1}^{L} } \right)^{\lambda }\), and the corresponding power operation between the upper bounds is \(\left( {u_{1}^{U} } \right)^{\lambda }\). The power operation between the lower bounds of the NMEBDs is \(\left( {1 - \left( {1 - \left( {v_{1}^{L} } \right)^{q} } \right)^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), and the power operation between the upper bounds is \(\left( {1 - \left( {1 - \left( {v_{1}^{U} } \right)^{q} } \right)^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\). Finally, we can obtain the power operation of IVq-ROFNs as follow

    $$A_1^\lambda = \begin{pmatrix} \begin{aligned} & \left[ \left(v ^L_1\right)^\lambda , \left(v^U_1 \right)^\lambda \right], \\ &\begin{bmatrix} \left( 1 - \left(1 - \left( u^L_1 \right)^q\right)^\lambda \right)^{1 \left / \right.q} \\ \left( 1 - \left(1 - \left( u^U_1 \right)^q\right)^\lambda \right)^{1 \left / \right.q} \end{bmatrix} \end{aligned}\end{pmatrix}.$$

Appendix 2

  1. (1)

    The addition operation between IVq-RPtFNs. We need to compute the addition operations for the interval POSMEBDs, NEUMEBDs, and NEGMEBDs of IVq-ROFNs. According to Definition 3, the addition operations of the lower bounds and upper bounds of the POSMEBDs are \(\left( {\left( {\Phi_{1}^{L} } \right)^{q} + \left( {\Phi_{2}^{L} } \right)^{q} - \left( {\Phi_{1}^{L} } \right)^{q} \left( {\Phi_{2}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\) and \(\left( {\left( {\Phi_{1}^{U} } \right)^{q} + \left( {\Phi_{2}^{U} } \right)^{q} - \left( {\Phi_{1}^{U} } \right)^{q} \left( {\Phi_{2}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), respectively. The addition operations of the lower bounds and upper bounds of the NEUMEBDs are \(\Psi_{1}^{L} \Psi_{2}^{L}\) and\(\Psi_{1}^{U} \Psi_{2}^{U}\), respectively. The addition operations of the lower bounds and upper bounds of the NEGMEBDs are \(\Upsilon_{1}^{L} \Upsilon_{2}^{L}\) and \(\Upsilon_{1}^{U} \Upsilon_{2}^{U}\), respectively. From these calculations, we obtain

    $$A_1 \oplus A_2 = \begin{pmatrix} \begin{aligned} &\begin{bmatrix} \left(\left(\Phi^L_1\right)^q + \left(\Phi^L_2\right)^q - \left(\Phi^L_1\right)^q\left(\Phi^L_2\right)^q\right)^{1 \left / \right. q}, \\ \left(\left(\Phi^U_1\right)^q + \left(\Phi^L_2\right)^q - \left(\Phi^U_1\right)^q\left(\Phi^U_2\right)^q\right)^{1 \left / \right. q} \end{bmatrix}, \\& \left[\Psi^L_1 \Psi^L_2, \Psi^U_1 \Psi^U_2\right], \left[\Upsilon^L_1 \Upsilon^L_2, \Upsilon^U_1 \Upsilon^U_2\right] \end{aligned} \end{pmatrix},$$
  2. (2)

    The product operation between IVq-RPtFNs. Similarly, the product operations of the lower bounds and upper bounds of the POSMEBDs are \(\Phi_{1}^{L} \Phi_{2}^{L}\) and\(\Phi_{1}^{U} \Phi_{2}^{U}\), respectively. The product operations of the lower bounds and upper bounds of the NEUMEBDs are \(\left( {\left( {\Psi_{1}^{L} } \right)^{q} + \left( {\Psi_{2}^{L} } \right)^{q} - \left( {\Psi_{1}^{L} } \right)^{q} \left( {\Psi_{2}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\) and \(\left( {\left( {\Psi_{1}^{U} } \right)^{q} + \left( {\Psi_{2}^{U} } \right)^{q} - \left( {\Psi_{1}^{U} } \right)^{q} \left( {\Psi_{2}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), respectively. The product operations of the lower bounds and upper bounds of the NEGMEBDs are \(\left( {\left( {\Upsilon_{1}^{L} } \right)^{q} + \left( {\Upsilon_{2}^{L} } \right)^{q} - \left( {\Upsilon_{1}^{L} } \right)^{q} \left( {\Upsilon_{2}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\) and \(\left( {\left( {\Upsilon_{1}^{U} } \right)^{q} + \left( {\Upsilon_{2}^{U} } \right)^{q} - \left( {\Upsilon_{1}^{U} } \right)^{q} \left( {\Upsilon_{2}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), respectively. From these calculations, we obtain

    $$A_1 \otimes A_2 = \begin{pmatrix} \begin{aligned} &\left[ \Phi^L_1 \Phi^L_2, \Phi^U_1 \Phi^U_2\right], \\ & \begin{bmatrix} \left(\left(\Psi^L_1\right)^q + \left(\Psi^L_2\right)^1 - \left(\Psi^L_1\right)^q\left(\Psi^L_2\right)^q\right)^{1 \left /\right. q}, \\ \left(\left(\Psi^U_1\right)^q + \left(\Psi^U_2\right)^1 - \left(\Psi^U_1\right)^q\left(\Psi^U_2\right)^q\right)^{1 \left /\right. q}\end{bmatrix}, \\ & \begin{bmatrix} \left(\left(\Upsilon^L_1\right)^q + \left(\Upsilon^L_2\right)^1 - \left(\Upsilon^L_1\right)^q\left(\Upsilon^L_2\right)^q\right)^{1 \left /\right. q}, \\ \left(\left(\Upsilon^U_1\right)^q + \left(\Upsilon^U_2\right)^1 - \left(\Upsilon^U_1\right)^q\left(\Upsilon^U_2\right)^q\right)^{1 \left /\right. q}\end{bmatrix} \end{aligned} \end{pmatrix},$$
  3. (3)

    The scalar multiplication of IVq-RPtFNs. The scalar multiplications of the lower bounds and upper bounds of the POSMEBDs are \(\left( {1 - \left( {1 - \left( {\Phi_{1}^{L} } \right)^{q} } \right)^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\) and \(\left( {1 - \left( {1 - \left( {\Phi_{1}^{U} } \right)^{q} } \right)^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), respectively. The scalar multiplications of the lower bounds and upper bounds of the NEUMEBDs are \(\left( {\Psi_{1}^{L} } \right)^{\lambda }\) and\(\left( {\Psi_{1}^{U} } \right)^{\lambda }\), respectively. The scalar multiplications of the lower bounds and upper bounds of the NEGMEBDs are \(\left( {\Upsilon_{1}^{L} } \right)^{\lambda }\) and \(\left( {\Upsilon_{1}^{U} } \right)^{\lambda }\), respectively. From these calculations, we obtain

    $$\lambda A_1 = \begin{pmatrix} \begin{aligned} &\begin{bmatrix} \left(1 -\left(1 - \left(\Phi^L_1\right)^q\right)^\lambda\right)^{1 \left / \right. q}, \\ \left(1 -\left(1 - \left(\Phi^U_1\right)^q\right)^\lambda\right)^{1 \left / \right. q}\end{bmatrix} \\& \left[\left(\Psi^L_1\right)^\lambda, \left(\Psi^L_1\right)^\lambda \right], \left[\left(\Upsilon^L_1\right)^\lambda, \left(\Upsilon^L_1\right)^\lambda \right] \end{aligned} \end{pmatrix},$$
  4. (4)

    The power operation of IVq-RPtFNs. The power operations of the lower bounds and upper bounds of the POSMEBDs are \(\left( {\Phi_{1}^{L} } \right)^{\lambda }\) and \(\left( {\Phi_{1}^{U} } \right)^{\lambda }\), respectively. The power operations of the lower bounds and upper bounds of the NEUMEBDs are \(\left( {1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\) and \(\left( {1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), respectively. The power operations of the lower bounds and upper bounds of the NEGMEBDs are \(\left( {1 - \left( {1 - \left( {\Upsilon_{1}^{L} } \right)^{q} } \right)^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\) and \(\left( {1 - \left( {1 - \left( {\Upsilon_{1}^{U} } \right)^{q} } \right)^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), respectively. From these calculations, we obtain

    $$A^\lambda_1 = \begin{pmatrix} \begin{aligned} &\left[\left(\Phi^L_1\right)^\lambda , \left(\Phi^U_1\right)^\lambda\right] \\ &\begin{bmatrix} \left(1 -\left(1 - \left(\Psi^L_1\right)^q\right)^\lambda\right)^{1 \left / \right. q}, \\ \left(1 -\left(1 - \left(\Psi^U_1\right)^q\right)^\lambda\right)^{1 \left / \right. q}\end{bmatrix} \\ &\begin{bmatrix} \left(1 -\left(1 - \left(\Upsilon^L_1\right)^q\right)^\lambda\right)^{1 \left / \right. q}, \\ \left(1 -\left(1 - \left(\Upsilon^U_1\right)^q\right)^\lambda\right)^{1 \left / \right. q}\end{bmatrix} \end{aligned}\end{pmatrix}.$$

Appendix 3

Proof

According to Definition 6 we can easily infer that (1), (3), (5), (6), and (7) are clarified, and (2), (4), and (8) need to be further proven as follows:

For (2), \(\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3} = A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)\)

Let the degree of positive membership of \(\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3}\) and \(A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)\) be \(\Phi_{{\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3} }}\) and\(\Phi_{{A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)}}\), the degree of neutral membership of \(\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3}\) and \(A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)\) be \(\Psi_{{\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3} }}\) and \(\Psi_{{A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)}}\), and the degree of negative membership of \(\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3}\) and \(A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)\) be \(\Upsilon_{{\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3} }}\) and\(\Upsilon_{{A_{1} + \left( {A_{2} + A_{3} } \right)}}\), respectively. Then, we obtain

$$\begin{aligned} &\left[ {\Phi_{{\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3} }}^{L} ,\Phi_{{\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3} }}^{U} } \right] \hfill \\ &= \left[ \begin{aligned} \left( {\left( {\Phi_{1}^{L} } \right)^{q} + \left( {\Phi_{2}^{L} } \right)^{q} - \left( {\Phi_{1}^{L} } \right)^{q} \left( {\Phi_{2}^{L} } \right)^{q} + \left( {\Phi_{3}^{L} } \right)^{q} - \left( {\left( {\Phi_{1}^{L} } \right)^{q} + \left( {\Phi_{2}^{L} } \right)^{q} - \left( {\Phi_{1}^{L} } \right)^{q} \left( {\Phi_{2}^{L} } \right)^{q} } \right)\left( {\Phi_{3}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {\left( {\Phi_{1}^{U} } \right)^{q} + \left( {\Phi_{2}^{U} } \right)^{q} - \left( {\Phi_{1}^{U} } \right)^{q} \left( {\Phi_{2}^{U} } \right)^{q} + \left( {\Phi_{3}^{U} } \right)^{q} - \left( {\left( {\Phi_{1}^{U} } \right)^{q} + \left( {\Phi_{2}^{U} } \right)^{q} - \left( {\Phi_{1}^{U} } \right)^{q} \left( {\Phi_{2}^{U} } \right)^{q} } \right)\left( {\Phi_{3}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ &= \left[ \begin{aligned} \left( {\left( {\Phi_{1}^{L} } \right)^{q} + \left( {\Phi_{2}^{L} } \right)^{q} + \left( {\Phi_{3}^{L} } \right)^{q} - \left( {\Phi_{1}^{L} } \right)^{q} \left( {\Phi_{2}^{L} } \right)^{q} - \left( {\Phi_{1}^{L} } \right)^{q} \left( {\Phi_{3}^{L} } \right)^{q} - \left( {\Phi_{2}^{L} } \right)^{q} \left( {\Phi_{3}^{L} } \right)^{q} - \left( {\Phi_{1}^{L} } \right)^{q} \left( {\Phi_{2}^{L} } \right)^{q} \left( {\Phi_{3}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {\left( {\Phi_{1}^{U} } \right)^{q} + \left( {\Phi_{2}^{U} } \right)^{q} + \left( {\Phi_{3}^{U} } \right)^{q} - \left( {\Phi_{1}^{U} } \right)^{q} \left( {\Phi_{2}^{U} } \right)^{q} - \left( {\Phi_{1}^{U} } \right)^{q} \left( {\Phi_{3}^{U} } \right)^{q} - \left( {\Phi_{2}^{U} } \right)^{q} \left( {\Phi_{3}^{U} } \right)^{q} - \left( {\Phi_{1}^{U} } \right)^{q} \left( {\Phi_{2}^{U} } \right)^{q} \left( {\Phi_{3}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ \end{aligned}$$
$$\begin{aligned} &\left[ {\Phi_{{A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)}}^{L} ,\Phi_{{A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)}}^{U} } \right] \hfill \\ &= \left[ \begin{aligned} \left( {\left( {\Phi_{2}^{L} } \right)^{q} + \left( {\Phi_{3}^{L} } \right)^{q} - \left( {\Phi_{2}^{L} } \right)^{q} \left( {\Phi_{3}^{L} } \right)^{q} + \left( {\Phi_{1}^{L} } \right)^{q} - \left( {\left( {\Phi_{2}^{L} } \right)^{q} + \left( {\Phi_{3}^{L} } \right)^{q} - \left( {\Phi_{2}^{L} } \right)^{q} \left( {\Phi_{3}^{L} } \right)^{q} } \right)\left( {\Phi_{1}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {\left( {\Phi_{2}^{U} } \right)^{q} + \left( {\Phi_{3}^{U} } \right)^{q} - \left( {\Phi_{2}^{U} } \right)^{q} \left( {\Phi_{3}^{U} } \right)^{q} + \left( {\Phi_{1}^{U} } \right)^{q} - \left( {\left( {\Phi_{2}^{U} } \right)^{q} + \left( {\Phi_{3}^{U} } \right)^{q} - \left( {\Phi_{2}^{U} } \right)^{q} \left( {\Phi_{3}^{U} } \right)^{q} } \right)\left( {\Phi_{1}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ &= \left[ \begin{aligned} \left( {\left( {\Phi_{1}^{L} } \right)^{q} + \left( {\Phi_{2}^{L} } \right)^{q} + \left( {\Phi_{3}^{L} } \right)^{q} - \left( {\Phi_{1}^{L} } \right)^{q} \left( {\Phi_{2}^{L} } \right)^{q} - \left( {\Phi_{1}^{L} } \right)^{q} \left( {\Phi_{3}^{L} } \right)^{q} - \left( {\Phi_{2}^{L} } \right)^{q} \left( {\Phi_{3}^{L} } \right)^{q} - \left( {\Phi_{1}^{L} } \right)^{q} \left( {\Phi_{2}^{L} } \right)^{q} \left( {\Phi_{3}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {\left( {\Phi_{1}^{U} } \right)^{q} + \left( {\Phi_{2}^{U} } \right)^{q} + \left( {\Phi_{3}^{U} } \right)^{q} - \left( {\Phi_{1}^{U} } \right)^{q} \left( {\Phi_{2}^{U} } \right)^{q} - \left( {\Phi_{1}^{U} } \right)^{q} \left( {\Phi_{3}^{U} } \right)^{q} - \left( {\Phi_{2}^{U} } \right)^{q} \left( {\Phi_{3}^{U} } \right)^{q} - \left( {\Phi_{1}^{U} } \right)^{q} \left( {\Phi_{2}^{U} } \right)^{q} \left( {\Phi_{3}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ \end{aligned}$$

Then,

$$\Phi_{{\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3} }} { = }\Phi_{{A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)}}$$

Similarly, we can deduce that

$$\Psi_{{\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3} }} { = }\Psi_{{A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)}}$$
$$\Upsilon_{{\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3} }} { = }\Upsilon_{{A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)}}$$

Therefore, \(\left( {A_{1} \oplus A_{2} } \right) \oplus A_{3} = A_{1} \oplus \left( {A_{2} \oplus A_{3} } \right)\)

For (4), \(\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3} = A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)\)

Let the degree of positive membership of \(\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3}\) and \(A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)\) be \(\Phi_{{\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3} }}\) and\(\Phi_{{A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)}}\), the degree of neutral membership be \(\Psi_{{\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3} }}\) and\(\Psi_{{A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)}}\), and the degree of negative membership be \(\Upsilon_{{\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3} }}\) and \(\Upsilon_{{A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)}}\), respectively. Then, we can obtain

$$\begin{aligned} &\left[ {\Psi_{{\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3} }}^{L} ,\Psi_{{\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3} }}^{U} } \right] \hfill \\ &= \left[ \begin{aligned} \left( {\left( {\Psi_{1}^{L} } \right)^{q} + \left( {\Psi_{2}^{L} } \right)^{q} - \left( {\Psi_{1}^{L} } \right)^{q} \left( {\Psi_{2}^{L} } \right)^{q} + \left( {\Psi_{3}^{L} } \right)^{q} - \left( {\left( {\Psi_{1}^{L} } \right)^{q} + \left( {\Psi_{2}^{L} } \right)^{q} - \left( {\Psi_{1}^{L} } \right)^{q} \left( {\Psi_{2}^{L} } \right)^{q} } \right)\left( {\Psi_{3}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {\left( {\Psi_{1}^{U} } \right)^{q} + \left( {\Psi_{2}^{U} } \right)^{q} - \left( {\Psi_{1}^{U} } \right)^{q} \left( {\Psi_{2}^{U} } \right)^{q} + \left( {\Psi_{3}^{U} } \right)^{q} - \left( {\left( {\Psi_{1}^{U} } \right)^{q} + \left( {\Psi_{2}^{U} } \right)^{q} - \left( {\Psi_{1}^{U} } \right)^{q} \left( {\Psi_{2}^{U} } \right)^{q} } \right)\left( {\Psi_{3}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ &= \left[ \begin{aligned} \left( {\left( {\Psi_{1}^{L} } \right)^{q} + \left( {\Psi_{2}^{L} } \right)^{q} + \left( {\Psi_{3}^{L} } \right)^{q} - \left( {\Psi_{1}^{L} } \right)^{q} \left( {\Psi_{2}^{L} } \right)^{q} - \left( {\Psi_{1}^{L} } \right)^{q} \left( {\Psi_{3}^{L} } \right)^{q} - \left( {\Psi_{2}^{L} } \right)^{q} \left( {\Psi_{3}^{L} } \right)^{q} - \left( {\Psi_{1}^{L} } \right)^{q} \left( {\Psi_{2}^{L} } \right)^{q} \left( {\Psi_{3}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {\left( {\Psi_{1}^{U} } \right)^{q} + \left( {\Psi_{2}^{U} } \right)^{q} + \left( {\Psi_{3}^{U} } \right)^{q} - \left( {\Psi_{1}^{U} } \right)^{q} \left( {\Psi_{2}^{U} } \right)^{q} - \left( {\Psi_{1}^{U} } \right)^{q} \left( {\Psi_{3}^{U} } \right)^{q} - \left( {\Psi_{2}^{U} } \right)^{q} \left( {\Psi_{3}^{U} } \right)^{q} - \left( {\Psi_{1}^{U} } \right)^{q} \left( {\Psi_{2}^{U} } \right)^{q} \left( {\Psi_{3}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ \end{aligned}$$
$$\begin{aligned} &\left[ {\Psi_{{A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)}}^{L} ,\Psi_{{A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)}}^{U} } \right] \hfill \\ & = \left[ \begin{aligned} \left( {\left( {\Psi_{2}^{L} } \right)^{q} + \left( {\Psi_{3}^{L} } \right)^{q} - \left( {\Psi_{2}^{L} } \right)^{q} \left( {\Psi_{3}^{L} } \right)^{q} + \left( {\Psi_{1}^{L} } \right)^{q} - \left( {\left( {\Psi_{2}^{L} } \right)^{q} + \left( {\Psi_{3}^{L} } \right)^{q} - \left( {\Psi_{2}^{L} } \right)^{q} \left( {\Psi_{3}^{L} } \right)^{q} } \right)\left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {\left( {\Psi_{2}^{U} } \right)^{q} + \left( {\Psi_{3}^{U} } \right)^{q} - \left( {\Psi_{2}^{U} } \right)^{q} \left( {\Psi_{3}^{U} } \right)^{q} + \left( {\Psi_{1}^{U} } \right)^{q} - \left( {\left( {\Psi_{2}^{U} } \right)^{q} + \left( {\Psi_{3}^{U} } \right)^{q} - \left( {\Psi_{2}^{U} } \right)^{q} \left( {\Psi_{3}^{U} } \right)^{q} } \right)\left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ & = \left[ \begin{aligned} \left( {\left( {\Psi_{1}^{L} } \right)^{q} + \left( {\Psi_{2}^{L} } \right)^{q} + \left( {\Psi_{3}^{L} } \right)^{q} - \left( {\Psi_{1}^{L} } \right)^{q} \left( {\Psi_{2}^{L} } \right)^{q} - \left( {\Psi_{1}^{L} } \right)^{q} \left( {\Psi_{3}^{L} } \right)^{q} - \left( {\Psi_{2}^{L} } \right)^{q} \left( {\Psi_{3}^{L} } \right)^{q} - \left( {\Psi_{1}^{L} } \right)^{q} \left( {\Psi_{2}^{L} } \right)^{q} \left( {\Psi_{3}^{L} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {\left( {\Psi_{1}^{U} } \right)^{q} + \left( {\Psi_{2}^{U} } \right)^{q} + \left( {\Psi_{3}^{U} } \right)^{q} - \left( {\Psi_{1}^{U} } \right)^{q} \left( {\Psi_{2}^{U} } \right)^{q} - \left( {\Psi_{1}^{U} } \right)^{q} \left( {\Psi_{3}^{U} } \right)^{q} - \left( {\Psi_{2}^{U} } \right)^{q} \left( {\Psi_{3}^{U} } \right)^{q} - \left( {\Psi_{1}^{U} } \right)^{q} \left( {\Psi_{2}^{U} } \right)^{q} \left( {\Psi_{3}^{U} } \right)^{q} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ \end{aligned}$$

Then,

$$\Psi_{{\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3} }} { = }\Psi_{{A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)}}$$

Similarly, we can deduce that

$$\Upsilon_{{\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3} }} { = }\Upsilon_{{A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)}}$$
$$\Phi_{{\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3} }} { = }\Phi_{{A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)}}$$

Therefore, \(\left( {A_{1} \otimes A_{2} } \right) \otimes A_{3} = A_{1} \otimes \left( {A_{2} \otimes A_{3} } \right)\)

For (8), \(A_{1}^{{\lambda_{1} }} \otimes A_{1}^{{\lambda_{2} }} = A_{1}^{{\lambda_{1} + \lambda_{2} }}\)

Let \(A_{1} = \left\langle {\left[ {\Phi_{1}^{L} ,\Phi_{1}^{U} } \right],\left[ {\Psi_{1}^{L} ,\Psi_{1}^{U} } \right],\left[ {\Upsilon_{1}^{L} ,\Upsilon_{1}^{U} } \right]} \right\rangle\) be IVq-RPtFNs and \(\lambda_{1} ,\lambda_{2}\) be nonnegative real numbers. Then, we obtain

$$\begin{aligned} & \left( {\left[ {\Psi_{1}^{L} ,\Psi_{1}^{U} } \right]} \right)^{{\lambda_{1} }} \otimes \left( {\left[ {\Psi_{1}^{L} ,\Psi_{1}^{U} } \right]} \right)^{{\lambda_{2} }} \hfill \\ &{ = } \left[ \begin{aligned} \left( {1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{1} }} { + }1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{2} }} - \left( {\left( {1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{1} }} } \right)\left( {1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{2} }} } \right)} \right)} \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{1} }} { + }1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{2} }} - \left( {\left( {1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{1} }} } \right)\left( {1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{2} }} } \right)} \right)} \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ & { = } \left[ \begin{aligned} \left( {1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{1} }} { + }1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{2} }} - \left( {\left( {1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{1} }} } \right)\left( {1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{2} }} } \right)} \right)} \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{1} }} { + }1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{2} }} - \left( {\left( {1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{1} }} } \right)\left( {1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{2} }} } \right)} \right)} \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ & { = } \left[ \begin{aligned} \left( {1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{1} }} { + }\left( {1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{2} }} } \right)\left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{1} }} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{1} }} { + }\left( {1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{2} }} } \right)\left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{1} }} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ & = \left[ {1 - \left( {1 - \left( {\Psi_{1}^{L} } \right)^{q} } \right)^{{\lambda_{1} { + }\lambda_{2} }} ,1 - \left( {1 - \left( {\Psi_{1}^{U} } \right)^{q} } \right)^{{\lambda_{1} { + }\lambda_{2} }} } \right] \hfill \\ &{ =} \left( {\left[ {\Psi_{1}^{L} ,\Psi_{1}^{U} } \right]} \right)^{{\lambda_{1} { + }\lambda_{2} }} \hfill \\ \end{aligned}$$

Similarly, we can deduce that

$$\left( {\left[ {\Psi_{1}^{L} ,\Psi_{1}^{U} } \right]} \right)^{{\lambda_{1} }} \otimes \left( {\left[ {\Psi_{1}^{L} ,\Psi_{1}^{U} } \right]} \right)^{{\lambda_{2} }} { = }\left( {\left[ {\Psi_{1}^{L} ,\Psi_{1}^{U} } \right]} \right)^{{\lambda_{1} { + }\lambda_{2} }}$$
$$\left( {\left[ {\Upsilon_{1}^{L} ,\Upsilon_{1}^{U} } \right]} \right)^{{\lambda_{1} }} \otimes \left( {\left[ {\Upsilon_{1}^{L} ,\Upsilon_{1}^{U} } \right]} \right)^{{\lambda_{2} }} { = }\left( {\left[ {\Upsilon_{1}^{L} ,\Upsilon_{1}^{U} } \right]} \right)^{{\lambda_{1} { + }\lambda_{2} }}$$

Therefore, \(A_{1}^{{\lambda_{1} }} \otimes A_{1}^{{\lambda_{2} }} = A_{1}^{{\lambda_{1} + \lambda_{2} }}\)

Appendix 4

Proof

First, based on the power operation of IVq-RPtFNs in Definition 6, we conduct the h power operation of \(A_{i}\) and s power operation of \(A_{j}\). Specifically, for the h power operation of\(A_{i}\), we need to compute the h power operations of the lower bounds and upper bounds of the POSMEBDs, \(\left( {\Phi_{i}^{L} } \right)^{h}\) and\(\left( {\Phi_{i}^{U} } \right)^{h}\); the h power operations of the lower bounds and upper bounds of the NEUMEBDs, including \(\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{q} } \right)^{h} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\) and\(\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{q} } \right)^{h} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\); and the h power operations of the lower bounds and upper bounds of the NEGMEBDs, \(\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{q} } \right)^{h} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\) and\(\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{q} } \right)^{h} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}}\), respectively.

From these calculations, we obtain

$$A^h_i = \begin{pmatrix} \begin{aligned} &\left[\left(\Phi^L_i\right)^h, \left(\Phi^U_i\right)^h\right] \\ &\begin{bmatrix} \left(1 -\left(1 - \left(\Psi^L_i\right)^q\right)^h \right)^{1 \left / \right. q}, \\ \left(1 -\left(1 - \left(\Psi^U_i\right)^q\right)^h\right)^{1 \left / \right. q}\end{bmatrix} \\ &\begin{bmatrix} \left(1 -\left(1 - \left(\Upsilon^L_i\right)^q\right)^h\right)^{1 \left / \right. q}, \\ \left(1 -\left(1 - \left(\Upsilon^U_i\right)^q\right)^h\right)^{1 \left / \right. q}\end{bmatrix}\end{aligned}\end{pmatrix}$$

 

Similarly, we obtain the s power operation of \(A_{j}\) as follows:

$$A^s_i = \begin{pmatrix} \begin{aligned} &\left[\left(\Phi^L_i\right)^s, \left(\Phi^U_i\right)^s\right] \\ &\begin{bmatrix} \left(1 -\left(1 - \left(\Psi^L_i\right)^q\right)^s\right)^{1 \left / \right. q}, \\ \left(1 -\left(1 - \left(\Psi^U_i\right)^q\right)^s\right)^{1 \left / \right. q}\end{bmatrix} \\ &\begin{bmatrix} \left(1 -\left(1 - \left(\Upsilon^L_i\right)^q\right)^s\right)^{1 \left / \right. q}, \\ \left(1 -\left(1 - \left(\Upsilon^U_i\right)^q\right)^s\right)^{1 \left / \right. q}\end{bmatrix}\end{aligned} \end{pmatrix}$$

We easily determine that \(A_{i}^{h}\) and \(A_{i}^{s}\) are still IVq-RPtFNs.

Then, by the product operation between IVq-RPtFNs, \(A_{i}^{h}\) and \(A_{i}^{s}\) are multiplied. That is the product operations of the lower bounds and upper bounds in POSMEBDs, NEUMEBDs, and NEGMEBDs as follows:

$$\begin{aligned} & \left( {A_{i} } \right)^{h} \otimes \left( {A_{j} } \right)^{s} \hfill \\ & = \left( \begin{aligned} & \left[ {\left( {\Phi_{i}^{L} } \right)^{h} \left( {\Phi_{j}^{L} } \right)^{h} ,\left( {\Phi_{i}^{U} } \right)^{h} \left( {\Phi_{j}^{U} } \right)^{h} } \right], \hfill \\ &\left[ \begin{aligned} \left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{q} } \right)^{h} + 1 - \left( {1 - \left( {\Psi_{j}^{L} } \right)^{q} } \right)^{h} - \left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{q} } \right)^{h} } \right)\left( {1 - \left( {1 - \left( {\Psi_{j}^{L} } \right)^{q} } \right)^{h} } \right)} \right)^{\frac{1}{q}} , \hfill \\ \left( {1 - \left( {1 - \left( {\Phi_{i}^{U} } \right)^{q} } \right)^{h} + 1 - \left( {1 - \left( {\Psi_{j}^{U} } \right)^{q} } \right)^{h} - \left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{q} } \right)^{h} } \right)\left( {1 - \left( {1 - \left( {\Psi_{j}^{U} } \right)^{q} } \right)^{h} } \right)} \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right], \hfill \\ & \left[ \begin{aligned} \left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{q} } \right)^{h} + 1 - \left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{q} } \right)^{h} - \left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{q} } \right)^{h} } \right)\left( {1 - \left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{q} } \right)^{h} } \right)} \right)^{\frac{1}{q}} , \hfill \\ \left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{q} } \right)^{h} + 1 - \left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{q} } \right)^{h} - \left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{q} } \right)^{h} } \right)\left( {1 - \left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{q} } \right)^{h} } \right)} \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right] \hfill \\ \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned}$$

In addition, as \(i = 1,2, \cdots ,n\), we need to perform n product operations between \(A_{i}^{h}\) and \(A_{i}^{s}\) and add them together. According the addition operation rules of IVq-RPtFNs and the mathematical induction method, we obtain

$$\begin{aligned} &\sum\limits_{i = 1}^{n} {\left( {A_{i} } \right)^{h} \otimes \left( {A_{j} } \right)^{s} } \hfill \\ &= \left( \begin{aligned} & \left[ {\left( {1 - \prod\limits_{i = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{i}^{L} } \right)^{h} \left( {\Phi_{j}^{L} } \right)^{s} } \right)^{q} } \right)} } \right)^{\frac{1}{q}} ,\left( {1 - \prod\limits_{i = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{i}^{U} } \right)^{h} \left( {\Phi_{j}^{U} } \right)^{s} } \right)^{q} } \right)} } \right)^{\frac{1}{q}} } \right], \hfill \\ &\left[ {\prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Psi_{j}^{L} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} ,\prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Psi_{j}^{U} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} } } } \right], \hfill \\ & \left[ {\prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} ,\prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} } } } \right] \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned}$$

Similarly, because\(j = 1,2, \cdots ,n{\kern 1pt} {\kern 1pt} (i \ne j)\),

we need to perform n product operations between \(A_{i}^{h}\) and \(A_{i}^{s}\) and add them together. Thus, we obtain

$$\begin{aligned} & \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} } \right)^{h} \otimes \left( {A_{j} } \right)^{s} } } \hfill \\ &= \left( \begin{aligned}& \left[ {\left( {1 - \prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{i}^{L} } \right)^{h} \left( {\Phi_{j}^{L} } \right)^{s} } \right)^{q} } \right)} } } \right)^{\frac{1}{q}} ,\left( {1 - \prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{i}^{U} } \right)^{h} \left( {\Phi_{j}^{U} } \right)^{s} } \right)^{q} } \right)} } } \right)^{\frac{1}{q}} } \right], \hfill \\ &\left[ {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Psi_{j}^{L} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} } ,\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Psi_{j}^{U} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} } } } } \right], \hfill \\& \left[ {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{q} } \right)^{s} } \right)}^{\frac{1}{q}} ,\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} } } } } \right] \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned}$$

Since \(\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} } \right)^{h} \otimes \left( {A_{j} } \right)^{s} } }\) is still an IVq-RPtFN, we conduct scalar multiplication between \(\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} } \right)^{h} \otimes \left( {A_{j} } \right)^{s} } }\) and\(\frac{2}{n(n + 1)}\). According to Definition 6, we obtain

$$\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} } \right)^{h} \otimes \left( {A_{j} } \right)^{s} } } = \left( \begin{aligned} &\left[ \begin{aligned} \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{i}^{L} } \right)^{h} \left( {\Phi_{j}^{L} } \right)^{s} } \right)^{q} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} , \hfill \\ \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{i}^{U} } \right)^{h} \left( {\Phi_{j}^{U} } \right)^{s} } \right)^{q} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right], \hfill \\ &\left[ \begin{aligned} \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Psi_{j}^{L} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} } } } \right)^{{\frac{2}{n(n + 1)}}} , \hfill \\ \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Psi_{j}^{U} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} } } } \right)^{{\frac{2}{n(n + 1)}}} \hfill \\ \end{aligned} \right], \hfill \\ &\left[ \begin{aligned} \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} } } } \right)^{{\frac{2}{n(n + 1)}}} , \hfill \\ \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{q} } \right)^{s} } \right)^{\frac{1}{q}} } } } \right)^{{\frac{2}{n(n + 1)}}} \hfill \\ \end{aligned} \right] \hfill \\ \end{aligned} \right)$$

Then, based on the power operation of IVq-RPtFNs, we compute the \(\frac{1}{h + s}\) power operation of\(\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} } \right)^{h} \otimes \left( {A_{j} } \right)^{s} } }\), and the result is

$$\left( {\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} } \right)^{h} \otimes \left( {A_{j} } \right)^{s} } } } \right)^{{\frac{1}{h + s}}} = \left( \begin{aligned}& \left[ \begin{aligned} \left( {\left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{i}^{L} } \right)^{h} \left( {\Phi_{j}^{L} } \right)^{s} } \right)^{q} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} } \right)^{{\frac{1}{h + s}}} , \hfill \\ \left( {\left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{i}^{U} } \right)^{h} \left( {\Phi_{j}^{U} } \right)^{s} } \right)^{q} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} } \right)^{{\frac{1}{h + s}}} \hfill \\ \end{aligned} \right], \hfill \\ & \left[ \begin{aligned} \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Psi_{j}^{L} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} , \hfill \\ \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Psi_{j}^{U} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right], \hfill \\ &\left[ \begin{aligned} \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} , \hfill \\ \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right] \hfill \\ \end{aligned} \right)$$

Thus, we have proven Theorem 1.

Appendix 5

The proof of Theorem 2

Proof

Because \(A_{i}\) is equal to A for any i, we can obtain.

$$\begin{aligned} {\text{IVq - RPtFHM}}\left( {A_{1} ,A_{2} , \cdots ,A_{n} } \right) &= \left( {\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} } \right)^{h} \otimes \left( {A_{j} } \right)^{s} } } } \right)^{{\frac{1}{h + s}}} \hfill \\ &= \left( {\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( A \right)^{h} \otimes \left( A \right)^{s} } } } \right)^{{\frac{1}{h + s}}} \hfill \\ &= \left( {\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( A \right)^{h + s} } } } \right)^{{\frac{1}{h + s}}} { = }A \hfill \\ \end{aligned}$$

Therefore,\({\text{IVq - RPtFHM}}\left( {A_{1} ,A_{2} , \cdots ,A_{n} } \right) = A\).

The proof of Theorem 3

Proof

Based on Theorem 2, we can obtain

$$\begin{aligned} IVq - RPtFHM\left( {A_{1} ,A_{2} , \cdots ,A_{n} } \right) \hfill &= \left( {\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} } \right)^{h} \otimes \left( {A_{j} } \right)^{s} } } } \right)^{{\frac{1}{h + s}}} \hfill \\ & \le \left( {\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A^{ + } } \right)^{h} \otimes \left( {A^{ + } } \right)^{s} } } } \right)^{{\frac{1}{h + s}}} \hfill \\ & \le \left( {\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A^{ + } } \right)^{h + s} } } } \right)^{{\frac{1}{h + s}}} { = }A^{ + } \hfill \\ \end{aligned}$$

Similarly, we can obtain \(A^{ - } \le {\text{IVq - RPtFHM}}\left( {A_{1} ,A_{2} , \cdots ,A_{n} } \right)\),

Therefore, \(A^{ - } \le {\text{IVq - RPtFHM}}\left( {A_{1} ,A_{2} , \cdots ,A_{n} } \right) \le A^{ + }\).

The proof of Theorem 4

Proof

Based on Theorems 3 and 4, for any \(i\), there is \(\Phi_{{A_{i} }}^{L} \le \Phi_{{B_{i} }}^{L} ,{\kern 1pt} {\kern 1pt} \Phi_{{A_{i} }}^{U} \le \Phi_{{B_{i} }}^{U}\) and\(\Psi_{{A_{i} }}^{L} \ge \Psi_{{B_{i} }}^{L} ,{\kern 1pt} {\kern 1pt} \Psi_{{A_{i} }}^{U} \ge \Psi_{{B_{i} }}^{U}\),\(\Upsilon_{{A_{i} }}^{L} \ge \Upsilon_{{B_{i} }}^{L} ,{\kern 1pt} {\kern 1pt} \Upsilon_{{A_{i} }}^{U} \ge \Upsilon_{{B_{i} }}^{U}\)

Then,

$$\begin{aligned} \left( {\left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{{A_{i} }}^{L} } \right)^{h} \left( {\Phi_{{A_{j} }}^{L} } \right)^{s} } \right)^{q} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} } \right)^{{\frac{1}{g + l}}} \le \left( {\left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{{B_{i} }}^{L} } \right)^{h} \left( {\Phi_{{B_{j} }}^{L} } \right)^{s} } \right)^{q} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} } \right)^{{\frac{1}{g + l}}} , \hfill \\ \left( {\left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{{A_{i} }}^{U} } \right)^{h} \left( {\Phi_{{A_{j} }}^{U} } \right)^{s} } \right)^{q} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} } \right)^{{\frac{1}{g + l}}} \le \left( {\left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {{1} - \left( {\left( {\Phi_{{B_{i} }}^{U} } \right)^{h} \left( {\Phi_{{B_{j} }}^{U} } \right)^{s} } \right)^{q} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} } \right)^{{\frac{1}{g + l}}} \hfill \\ \end{aligned}$$

and

$$\begin{aligned} &\left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Phi_{{A_{i} }}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Phi_{{A_{j} }}^{L} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} \hfill \\ & \quad \ge \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Phi_{{B_{i} }}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Phi_{{B_{j} }}^{L} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} , \hfill \\ &\left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Phi_{{A_{i} }}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Phi_{{A_{j} }}^{U} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} \hfill \\ & \quad \ge \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Phi_{{B_{i} }}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Phi_{{B_{j} }}^{U} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned}$$

and

\(\begin{aligned} &\left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{{A_{i} }}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{{A_{j} }}^{L} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} \hfill \\ &\quad \ge \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{{B_{i} }}^{L} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{{B_{j} }}^{L} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} , \hfill \\ &\left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{{A_{i} }}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{{A_{j} }}^{U} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} \hfill \\ & \quad \ge \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{{B_{i} }}^{U} } \right)^{q} } \right)^{h} \left( {1 - \left( {\Upsilon_{{B_{j} }}^{U} } \right)^{q} } \right)^{s} } \right)} } } \right)^{{\frac{{2}}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned}\).

Based on Definitions 9 and 10, we can obtain

\({\text{IVq - RPtFHM}}\left( {A_{1} ,A_{2} , \cdots ,A_{n} } \right) \le {\text{IVq - RPtFHM}}\left( {B_{1} ,B_{2} , \cdots ,B_{n} } \right)\).

Appendix 6

Proof

Based on the operations of IVq-RPtFNs, we can obtain the following.

First, we carry out scalar multiplication and power operations on \(A_{i}\) and \(A_{j}\) according to the expression structure in Definition 11. Considering the operations of \(A_{i}\) as an example, we first utilize the scalar multiplication of IVq-RPtFNs in Definition 6 to multiply \(A_{i}\) and\(w_{i}\), that is, to multiply the lower bounds and upper bounds in POSMEBDs, NEUMEBDs, and NEGMEBDs in \(A_{i}\) with the real number\(w_{i}\). Then, we find that the interval POSMEBD of \(A_{i} w_{i}\) is \(\left[ {\left( {1 - \left( {1 - \left( {\Phi_{i}^{L} } \right)^{q} } \right)^{{w_{i} }} } \right)^{\frac{1}{q}} ,\left( {1 - \left( {1 - \left( {\Phi_{i}^{U} } \right)^{q} } \right)^{{w_{i} }} } \right)^{\frac{1}{q}} } \right]\), the interval NEUMEBD of \(A_{i} w_{i}\) is \(\left[ {\left( {\Psi_{i}^{L} } \right)^{{w_{i} }} ,\left( {\Psi_{i}^{U} } \right)^{{w_{i} }} } \right]\), and the interval NEGMEBD of \(A_{i} w_{i}\) is \(\left[ {\left( {\Upsilon_{i}^{L} } \right)^{{w_{i} }} ,\left( {\Upsilon_{i}^{U} } \right)^{{w_{i} }} } \right]\). Finally, we can obtain

$$A_{i} w_{i} { = }\left( {\left[ {\left( {1 - \left( {1 - \left( {\Phi_{i}^{L} } \right)^{q} } \right)^{{w_{i} }} } \right)^{\frac{1}{q}} ,\left( {1 - \left( {1 - \left( {\Phi_{i}^{U} } \right)^{q} } \right)^{{w_{i} }} } \right)^{\frac{1}{q}} } \right],\left[ {\left( {\Psi_{i}^{L} } \right)^{{w_{i} }} ,\left( {\Psi_{i}^{U} } \right)^{{w_{i} }} } \right],\left[ {\left( {\Upsilon_{i}^{L} } \right)^{{w_{i} }} ,\left( {\Upsilon_{i}^{U} } \right)^{{w_{i} }} } \right]} \right)$$

Then, we introduce the power operation of IVq-RPtFNs in Definition 6 to perform the h power operation of\(A_{i} w_{i}\), and we find that the interval POSMEBD of \(\left( {A_{i} w_{i} } \right)^{h}\) is\(\left[ {\left( {1 - \left( {1 - \left( {\Phi_{i}^{L} } \right)^{q} } \right)^{{w_{i} }} } \right)^{\frac{h}{q}} ,\left( {1 - \left( {1 - \left( {\Phi_{i}^{U} } \right)^{q} } \right)^{{w_{i} }} } \right)^{\frac{h}{q}} } \right]\), the interval NEUMEBD of \(\left( {A_{i} w_{i} } \right)^{h}\) is\(\left[ {\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} ,\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} } \right]\), and the interval NEGMEBD of \(\left( {A_{i} w_{i} } \right)^{h}\) is\(\left[ {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} ,\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} } \right]\). Then, we obtain

$$\left( {A_{i} w_{i} } \right)^{h} { = }\left( \begin{aligned} \left[ {\left( {1 - \left( {1 - \left( {\Phi_{i}^{L} } \right)^{q} } \right)^{{w_{i} }} } \right)^{\frac{h}{q}} ,\left( {1 - \left( {1 - \left( {\Phi_{i}^{U} } \right)^{q} } \right)^{{w_{i} }} } \right)^{\frac{h}{q}} } \right], \hfill \\ \left[ {\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} ,\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} } \right], \hfill \\ \left[ {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} ,\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} } \right] \hfill \\ \end{aligned} \right)$$

Similarly, we calculate the result of the scalar multiplication between \(A_{j}\) and \(w_{j}\) as follows:

$$A_{j} w_{j} { = }\left( {\left[ {\left( {1 - \left( {1 - \left( {\Phi_{j}^{L} } \right)^{q} } \right)^{{w_{j} }} } \right)^{\frac{1}{q}} ,\left( {1 - \left( {1 - \left( {\Phi_{j}^{U} } \right)^{q} } \right)^{{w_{j} }} } \right)^{\frac{1}{q}} } \right],\left[ {\left( {\Psi_{j}^{L} } \right)^{{w_{j} }} ,\left( {\Psi_{j}^{U} } \right)^{{w_{j} }} } \right],\left[ {\left( {\Upsilon_{j}^{L} } \right)^{{w_{j} }} ,\left( {\Upsilon_{j}^{U} } \right)^{{w_{j} }} } \right]} \right)$$

and the s power operation of \(A_{j} w_{j}\) as

$$\left( {A_{j} w_{j} } \right)^{s} { = }\left( \begin{aligned} & \left[ {\left( {1 - \left( {1 - \left( {\Phi_{j}^{L} } \right)^{q} } \right)^{{w_{j} }} } \right)^{\frac{s}{q}} ,\left( {1 - \left( {1 - \left( {\Phi_{j}^{U} } \right)^{q} } \right)^{{w_{j} }} } \right)^{\frac{s}{q}} } \right], \hfill \\ & \left[ {\left( {1 - \left( {1 - \left( {\Psi_{j}^{L} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} ,\left( {1 - \left( {1 - \left( {\Psi_{j}^{U} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} } \right], \hfill \\ & \left[ {\left( {1 - \left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} ,\left( {1 - \left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} } \right] \hfill \\ \end{aligned} \right)$$

Then, as the proof step in Theorem 2, we apply the product operations of IVq-RPtFNs in Definition 6 to multiply \(\left( {A_{i} w_{i} } \right)^{h}\) and \(\left( {A_{j} w_{j} } \right)^{s}\) as follows:

\(\begin{aligned}&(A_i w_i)^h \otimes (A_j w_j)^s \\ &=\begin{pmatrix} \begin{aligned}&\begin{bmatrix} \left(1 -\left(1 - \left(\Phi_i^L \right)^q\right)^{w_i}\right)^\frac{h}{q} \left(1 -\left(1 - \left(\Phi_i^L \right)^q\right)^{w_i}\right)^\frac{s}{q}, \\ \left(1 -\left(1 - \left(\Phi_i^U \right)^q\right)^{w_i}\right)^\frac{h}{q} \left(1 -\left(1 - \left(\Phi_i^U \right)^q\right)^{w_i}\right)^\frac{s}{q}\end{bmatrix} \\ & \begin{bmatrix} \begin{aligned} &\begin{pmatrix}\begin{aligned}&\left(\left(1 - \left(1 -\left(\Psi^L_i\right)^{w_iq}\right)^h\right)^\frac{l}{e}\right)^q + \left(\left(1 - \left(1 -\left(\Psi^L_i\right)^{w_iq}\right)^s\right)^\frac{l}{e}\right)^q \\& -\left(\left(1 - \left(1 -\left(\Psi^L_i\right)^{w_iq}\right)^h\right)^\frac{l}{e}\right)^q \left(\left(1 - \left(1 -\left(\Psi^L_i\right)^{w_iq}\right)^s\right)^\frac{l}{q}\right)^q, \end{aligned}\end{pmatrix}^\frac{1}{q} \\ &\begin{pmatrix}\begin{aligned}&\left(\left(1 - \left(1 -\left(\Psi^U_i\right)^{w_iq}\right)^h\right)^\frac{l}{e}\right)^q + \left(\left(1 - \left(1 -\left(\Psi^U_i\right)^{w_iq}\right)^s\right)^\frac{l}{e}\right)^q \\& -\left(\left(1 - \left(1 -\left(\Psi^U_i\right)^{w_iq}\right)^h\right)^\frac{l}{e}\right)^q \left(\left(1 - \left(1 -\left(\Psi^U_i\right)^{w_iq}\right)^s\right)^\frac{l}{q}\right)^q, \end{aligned}\end{pmatrix}^\frac{1}{q} \end{aligned} \end{bmatrix}, \\ &\begin{bmatrix} \begin{aligned} &\begin{pmatrix}\begin{aligned}&\left(\left(1 - \left(1 -\left(\Upsilon^L_i\right)^{w_iq}\right)^h\right)^\frac{l}{e}\right)^q + \left(\left(1 - \left(1 -\left(\Upsilon^L_i\right)^{w_iq}\right)^s\right)^\frac{l}{e}\right)^q \\& -\left(\left(1 - \left(1 -\left(\Upsilon^L_i\right)^{w_iq}\right)^h\right)^\frac{l}{e}\right)^q \left(\left(1 - \left(1 -\left(\Upsilon^L_i\right)^{w_iq}\right)^s\right)^\frac{l}{q}\right)^q, \end{aligned}\end{pmatrix}^\frac{1}{q}, \\ &\begin{pmatrix}\begin{aligned}&\left(\left(1 - \left(1 -\left(\Upsilon^U_i\right)^{w_iq}\right)^h\right)^\frac{l}{e}\right)^q + \left(\left(1 - \left(1 -\left(\Upsilon^U_i\right)^{w_iq}\right)^s\right)^\frac{l}{e}\right)^q \\& -\left(\left(1 - \left(1 -\left(\Upsilon^U_i\right)^{w_iq}\right)^h\right)^\frac{l}{e}\right)^q \left(\left(1 - \left(1 -\left(\Upsilon^U_i\right)^{w_iq}\right)^s\right)^\frac{l}{q}\right)^q, \end{aligned}\end{pmatrix}^\frac{1}{q}, \end{aligned} \end{bmatrix}\end{aligned}\end{pmatrix}\\ & = \begin{pmatrix}\begin{aligned}& \begin{bmatrix}\begin{aligned} \left(1 -\left(1 - \left(\Phi_i^L \right)^q\right)^{w_i}\right)^\frac{h}{q} \left(1 -\left(1 - \left(\Phi_i^L \right)^q\right)^{w_i}\right)^\frac{s}{q}, \\ \left(1 -\left(1 - \left(\Phi_i^U \right)^q\right)^{w_i}\right)^\frac{h}{q} \left(1 -\left(1 - \left(\Phi_i^U \right)^q\right)^{w_i}\right)^\frac{s}{q} \end{aligned}\end{bmatrix}, \\ &\begin{bmatrix} \left(\left(1 -\left(1 - \left(\Psi_i^L \right)^q\right)^{w_i}\right)\left(1 -\left(1 - \left(\Psi_i^L \right)^q\right)^{w_i}\right)\right)^\frac{1}{q}, \\ \left(\left(1 -\left(1 - \left(\Psi_i^U \right)^q\right)^{w_i}\right) \left(1 -\left(1 - \left(\Psi_i^U \right)^q\right)^{w_i}\right)\right)^\frac{1}{q}\end{bmatrix}, \\&\begin{bmatrix} \left(\left(1 -\left(1 - \left(\Upsilon_i^L \right)^q\right)^{w_i}\right)\left(1 -\left(1 - \left(\Upsilon_i^L \right)^q\right)^{w_i}\right)\right)^\frac{1}{q}, \\ \left(\left(1 -\left(1 - \left(\Upsilon_i^U \right)^q\right)^{w_i}\right) \left(1 -\left(1 - \left(\Upsilon_i^U \right)^q\right)^{w_i}\right)\right)^\frac{1}{q}\end{bmatrix} \end{aligned}\end{pmatrix}\end{aligned}\) Similarly, because \(i = 1,2, \cdots ,n\), we need to perform n product operations between \(\left( {A_{i} w_{i} } \right)^{h}\) and \(\left( {A_{j} w_{j} } \right)^{s}\) and add them. Then, we obtain

$$\begin{aligned} & \sum\limits_{i = 1}^{n} {\left( {A_{i} w_{i} } \right)^{h} \otimes \left( {A_{j} w_{j} } \right)^{s} } \hfill \\ &= \left( \begin{aligned} & \left[ \begin{aligned} \left( {1 - \prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {1 - \left( {\Phi_{i}^{L} } \right)^{q} } \right)^{{w_{i} }} } \right)^{h} \left( {1 - \left( {1 - \left( {\Phi_{j}^{L} } \right)^{q} } \right)^{{w_{j} }} } \right)^{s} } \right)} } \right)^{\frac{1}{q}} , \hfill \\ \left( {1 - \prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {1 - \left( {\Phi_{i}^{U} } \right)^{q} } \right)^{{w_{i} }} } \right)^{h} \left( {1 - \left( {1 - \left( {\Phi_{j}^{U} } \right)^{q} } \right)^{{w_{j} }} } \right)^{s} } \right)} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right], \hfill \\ & \left[ \begin{aligned} \prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)}^{\frac{1}{q}} \left( {\left( {1 - \left( {\Psi_{j}^{L} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} , \hfill \\ \prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)}^{\frac{1}{q}} \left( {\left( {1 - \left( {\Psi_{j}^{U} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right], \hfill \\ & \left[ \begin{aligned} \prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)}^{\frac{1}{q}} \left( {\left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} , \hfill \\ \prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)}^{\frac{1}{q}} \left( {\left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right] \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned}$$

Furthermore, because \(j = 1,2, \cdots ,n{\kern 1pt} {\kern 1pt} (i \ne j)\), we also need to compute n product operations between \(\left( {A_{i} w_{i} } \right)^{h}\) and \(\left( {A_{j} w_{j} } \right)^{s}\) and add them once more as follows:

$$\begin{aligned} & \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} w_{i} } \right)^{h} \otimes \left( {A_{j} w_{j} } \right)^{s} } } \hfill \\ &= \left( \begin{aligned} &\left[ \begin{aligned} \left( {1 - \prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {1 - \left( {\Phi_{i}^{L} } \right)^{q} } \right)^{{w_{i} }} } \right)^{h} \left( {1 - \left( {1 - \left( {\Phi_{j}^{L} } \right)^{q} } \right)^{{w_{j} }} } \right)^{s} } \right)} } } \right)^{\frac{1}{q}} , \hfill \\ \left( {1 - \prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {1 - \left( {\Phi_{i}^{U} } \right)^{q} } \right)^{{w_{i} }} } \right)^{h} \left( {1 - \left( {1 - \left( {\Phi_{j}^{U} } \right)^{q} } \right)^{{w_{j} }} } \right)^{s} } \right)} } } \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right], \hfill \\ &\left[ \begin{aligned} \prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)} }^{\frac{1}{q}} \left( {1 - \left( {1 - \left( {\Psi_{j}^{L} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} , \hfill \\ \prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)} }^{\frac{1}{q}} \left( {1 - \left( {1 - \left( {\Psi_{j}^{U} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right], \hfill \\ &\left[ \begin{aligned} \prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)} }^{\frac{1}{q}} \left( {1 - \left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} , \hfill \\ \prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)} }^{\frac{1}{q}} \left( {1 - \left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right] \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned}$$

Next, we calculate the scalar multiplication between \(\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} w_{i} } \right)^{h} \otimes \left( {A_{j} w_{j} } \right)^{s} } }\) and the real number \(\frac{2}{n(n + 1)}\) as follows:

$$\begin{aligned} & \frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} w_{i} } \right)^{h} \otimes \left( {A_{j} w_{j} } \right)^{s} } } \hfill \\ &= \left( \begin{aligned} & \left[ \begin{aligned} \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {1 - \left( {\Phi_{i}^{L} } \right)^{q} } \right)^{{w_{i} }} } \right)^{h} \left( {1 - \left( {1 - \left( {\Phi_{j}^{L} } \right)^{q} } \right)^{{w_{j} }} } \right)^{s} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} , \hfill \\ \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {1 - \left( {\Phi_{i}^{U} } \right)^{q} } \right)^{{w_{i} }} } \right)^{h} \left( {1 - \left( {1 - \left( {\Phi_{j}^{U} } \right)^{q} } \right)^{{w_{j} }} } \right)^{s} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} \hfill \\ \end{aligned} \right], \hfill \\ &\left[ \begin{aligned} \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} } \left( {1 - \left( {1 - \left( {\Psi_{j}^{L} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} } } \right)^{{\frac{2}{n(n + 1)}}} , \hfill \\ \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} } \left( {1 - \left( {1 - \left( {\Psi_{j}^{U} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} } } \right)^{{\frac{2}{n(n + 1)}}} \hfill \\ \end{aligned} \right], \hfill \\ &\left[ \begin{aligned} \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} } \left( {1 - \left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} } } \right)^{{\frac{2}{n(n + 1)}}} , \hfill \\ \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)^{\frac{1}{q}} } \left( {1 - \left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{{w_{j} q}} } \right)^{s} } \right)^{\frac{1}{q}} } } \right)^{{\frac{2}{n(n + 1)}}} \hfill \\ \end{aligned} \right] \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned}$$

Finally, we compute the \(\frac{1}{h + s}\) power operation of \(\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} w_{i} } \right)^{h} \otimes \left( {A_{j} w_{j} } \right)^{s} } }\) as follows:

$$\begin{aligned} & \left( {\frac{2}{n(n + 1)}\sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {A_{i} w_{i} } \right)^{h} \otimes \left( {A_{j} w_{j} } \right)^{s} } } } \right)^{{\frac{1}{h + s}}} \hfill \\ &= \left( \begin{aligned} &\left[ \begin{aligned} \left( {\left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {1 - \left( {\Phi_{i}^{L} } \right)^{q} } \right)^{{w_{i} }} } \right)^{h} \left( {1 - \left( {1 - \left( {\Phi_{j}^{L} } \right)^{q} } \right)^{{w_{j} }} } \right)^{s} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} } \right)^{{\frac{1}{h + s}}} , \hfill \\ \left( {\left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{i = 1}^{n} {\left( {1 - \left( {1 - \left( {1 - \left( {\Phi_{i}^{U} } \right)^{q} } \right)^{{w_{i} }} } \right)^{h} \left( {1 - \left( {1 - \left( {\Phi_{j}^{U} } \right)^{q} } \right)^{{w_{j} }} } \right)^{s} } \right)} } } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{\frac{1}{q}} } \right)^{{\frac{1}{h + s}}} \hfill \\ \end{aligned} \right], \hfill \\ &\left[ \begin{aligned} \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)} \left( {1 - \left( {1 - \left( {\Psi_{j}^{L} } \right)^{{w_{j} q}} } \right)^{s} } \right)} } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Psi_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)} \left( {1 - \left( {1 - \left( {\Psi_{j}^{U} } \right)^{{w_{j} q}} } \right)^{s} } \right)} } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right], \hfill \\ &\left[ \begin{aligned} \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{L} } \right)^{{w_{i} q}} } \right)^{h} } \right)} \left( {1 - \left( {1 - \left( {\Upsilon_{j}^{L} } \right)^{{w_{j} q}} } \right)^{s} } \right)} } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} , \hfill \\ \left( {1 - \left( {1 - \left( {\prod\limits_{i = 1}^{n} {\prod\limits_{j = 1}^{n} {\left( {1 - \left( {1 - \left( {\Upsilon_{i}^{U} } \right)^{{w_{i} q}} } \right)^{h} } \right)} \left( {1 - \left( {1 - \left( {\Upsilon_{j}^{U} } \right)^{{w_{j} q}} } \right)^{s} } \right)} } \right)^{{\frac{2}{n(n + 1)}}} } \right)^{{\frac{1}{h + s}}} } \right)^{{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}}} \hfill \\ \end{aligned} \right] \hfill \\ \end{aligned} \right) \hfill \\ \hfill \\ \end{aligned}$$

Therefore, we stopped the proof of Theorem 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Li, X., Garg, H. et al. A Cognitive Information-Based Decision-Making Algorithm Using Interval-Valued q-Rung Picture Fuzzy Numbers and Heronian Mean Operators. Cogn Comput 13, 357–380 (2021). https://doi.org/10.1007/s12559-020-09811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-020-09811-8

Keywords

Navigation