Skip to main content
Log in

Possibility Degree and Power Aggregation Operators of Single-Valued Trapezoidal Neutrosophic Numbers and Applications to Multi-Criteria Group Decision-Making

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools to describe complex cognitive information because of their advantage in maintaining the completeness and accuracy of information. This paper develops a method based on the single-valued trapezoidal neutrosophic power-weighted aggregation operators and possibility degree of SVTNNs for dealing with multi-criteria group decision-making (MCGDM) problems. First, the limitations of the existing operations for SVTNNs are discussed, and then an improved operation is defined. Moreover, the possibility degree of two SVTNNs with consideration of the influence of risk attitudes is proposed, and the comparison rules for SVTNNs are thereby established. Based on the new operation and possibility degree of SVTNNs, the single-valued trapezoidal neutrosophic power average and single-valued trapezoidal neutrosophic power geometric operators are proposed to aggregate the single-valued trapezoidal neutrosophic information. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, an example of a company selecting the most suitable green supplier is provided to present a comparative analysis between the proposed approach and other related methods. This example can demonstrate the effectiveness and flexibility of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. De K, Masilamani V. A no-reference image quality measure for blurred and compressed images using sparsity features. Cogn Comput. 2018;10(6):980–90.

    Google Scholar 

  2. Yang ZX, Tang LL, Zhang K, Wong PK. Multi-view CNN feature aggregation with ELM auto-encoder for 3D shape recognition. Cogn Comput. 2018;10(6):908–21.

    Google Scholar 

  3. Vasamsetti S, Mittal N, Neelapu BC, Sardana HK. 3D local spatio-temporal ternary patterns for moving object detection in complex scenes. Cogn Comput. 2019;11(1):18–30.

    Google Scholar 

  4. Yuan Y, Feng YC, Lu XQ. Structured dictionary learning for abnormal event detection in crowded scenes. Pattern Recogn. 2018;73:99–110.

    Google Scholar 

  5. Zheng JM, Cai F, Chen WY, Feng C, Chen HH. Hierarchical neural representation for document classification. Cogn Comput. 2019;11(2):317–27.

    Google Scholar 

  6. Peng HG, Wang JQ. Outranking decision-making method with z-number cognitive information. Cogn Comput. 2018;10(5):752–68.

    Google Scholar 

  7. Ji P, Zhang HY, Wang JQ. A projection-based outranking method with multi-hesitant fuzzy linguistic term sets for hotel location selection. Cogn Comput. 2018;10(5):737–51.

    Google Scholar 

  8. Ma ZZ, Zhu JJ, Ponnambalam K, Chen Y, Zhang ST. Group decision-making with linguistic cognition from a reliability perspective. Cogn Comput. 2019;11(2):172–92.

    Google Scholar 

  9. Luo SZ, Zhang HY, Wang JQ, Li L. Group decision-making approach for evaluating the sustainability of constructed wetlands with probabilistic linguistic preference relations. J Oper Res Soc. 2019;70(12):2039–55.

  10. Zadeh LA. Fuzzy sets. Inf Control. 1965;8(3):338–53.

    MATH  Google Scholar 

  11. Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986;20(1):87–96.

    MATH  Google Scholar 

  12. Torra V, Narukawa Y. On hesitant fuzzy sets and decision. In: The 18th IEEE International Conference on Fuzzy Systems in Fuzzy Systems. 2009; 1378-1382.

  13. Smarandache F. A unifying field in logics: neutrosophic logic. Philosophy. 1999:1–141.

  14. Pramanik S, Mondal K. Cosine similarity measure of rough neutrosophic sets and its application in medical diagnosis. Global J Adv Res. 2015;2(1):212–20.

    Google Scholar 

  15. Ye S, Fu J, Ye J. Medical diagnosis using distance-based similarity measures of single valued neutrosophic multisets. Neutrosophic Sets and Systems. 2015;7:47–52.

    Google Scholar 

  16. Ye J. Single-valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine. Soft Comput. 2017;21(3):817–25.

    MATH  Google Scholar 

  17. Guo Y, Şengür A, Tian JW. A novel breast ultrasound image segmentation algorithm based on neutrosophic similarity score and level set. Comput Methods Prog Biomed. 2016;123:43–53.

    Google Scholar 

  18. Wang HB, Smarandache F, Zhang Y, Sunderraman R. Single valued neutrosophic sets. In: Proceeding of 10th International Conference on Fuzzy Theory and Technology. 2005.

  19. Wang HB, Smarandache F, Sunderraman R, Zhang YQ. Interval neutrosophic sets and logic: theory and applications in computing. Phoenix, Arizona, USA: Hexis; 2005.

    MATH  Google Scholar 

  20. Wang Y, Wang XK, Wang JQ. Cloud service reliability assessment approach based on multi-valued neutrosophic cross-entropy and entropy measures. Filomat. 2018;2(8):2793–812.

    Google Scholar 

  21. Liu PD, Li HG. Multiple attribute decision-making method based on some normal neutrosophic Bonferroni mean operators. Neural Comput & Applic. 2017;28(1):179–94.

    Google Scholar 

  22. Liu PD, Teng F. Multiple attribute decision making method based on normal neutrosophic generalized weighted power averaging operator. Int J Mach Learn Cybern. 2018;9(2):281–93.

    Google Scholar 

  23. Liu PD, Shi LL. The generalized hybrid weighted average operator based on interval neutrosophic hesitant set and its application to multiple attribute decision making. Neural Comput & Applic. 2015;26(2):457–71.

    Google Scholar 

  24. Liu P, Cheng S, Zhang Y. An extended multi-criteria group decision-making PROMETHEE method based on probability multi-valued neutrosophic sets. Int J Fuzzy Syst. 2019;21(2):388–406.

    Google Scholar 

  25. Liu PD, Zhang XH. Some Maclaurin symmetric mean operators for single-valued trapezoidal neutrosophic numbers and their applications to group decision making. Int J Fuzzy Syst. 2018;20(1):45–61.

    MathSciNet  Google Scholar 

  26. Liu PD, Chu YC, Li YW, Chen YB. Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. Int J Fuzzy Syst. 2014;16(2):242–55.

    Google Scholar 

  27. Sun HX, Yang HX, Wu JZ, Yang OY. Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making. J Intell Fuzzy Syst. 2015;28(6):2443–55.

    MathSciNet  MATH  Google Scholar 

  28. Ye J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int J Gen Syst. 2013;42(4):386–94.

    MathSciNet  MATH  Google Scholar 

  29. Ye J. Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl Math Model. 2014;38(3):1170–5.

    MathSciNet  Google Scholar 

  30. Şahin R, Karabacak M. A multi attribute decision making method based on inclusion measure for interval neutrosophic sets. Int J Eng Appl Sci. 2015;2(2):13–5.

    Google Scholar 

  31. Broumi S, Smarandache F. New distance and similarity measures of interval neutrosophic sets. In: 17th International Conference on Information Fusion. 2014;1–17.

  32. Broumi S, Smarandache F. Cosine similarity measure of interval valued neutrosophic sets. Neutrosophic Sets and Systems. 2014;5:15–20.

    Google Scholar 

  33. Broumi S, Smarandache F. Correlation coefficient of interval neutrosophic set. Appl Mech Mater. 2013;436:511–7.

    Google Scholar 

  34. Zhang ZM, Wu C. A novel method for single-valued neutrosophic multi-criteria decision making with incomplete weight information. Neutrosophic Sets and Systems. 2014;4:35–49.

    Google Scholar 

  35. Chi PP, Liu PD. An extended TOPSIS method for the multiple attribute decision making problems based on interval neutrosophic set. Neutrosophic Sets and Systems. 2013;1(1):63–70.

    Google Scholar 

  36. Zhang HY, Wang JQ, Chen XH. An outranking approach for multi-criteria decision-making problems with interval-valued neutrosophic sets. Neural Comput & Applic. 2016;27(3):615–27.

    Google Scholar 

  37. Ye J. An extended TOPSIS method for multiple attribute group decision making based on single valued neutrosophic linguistic numbers. J Intell Fuzzy Syst. 2015;28(1):247–55.

    MathSciNet  Google Scholar 

  38. Tian ZP, Wang J, Wang JQ, Zhang HY. Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Group Decis Negot. 2017;26(3):597–627.

    Google Scholar 

  39. Ye J. Some aggregation operators of interval neutrosophic linguistic numbers for multiple attribute decision making. J Intell Fuzzy Syst. 2014;27(5):2231–41.

    MathSciNet  MATH  Google Scholar 

  40. Broumi S, Ye J, Smarandache F. An extended TOPSIS method for multiple attribute decision making based on interval neutrosophic uncertain linguistic variables. Neutrosophic Sets and Systems. 2015;8:22–31.

    Google Scholar 

  41. Ji P, Zhang HY, Wang JQ. A fuzzy decision support model with sentiment analysis for items comparison in e-commerce: the case study of PConline.com. IEEE T Syst Man CY-S. 2019;49(10):1993–2004.

  42. Wang JQ, Zhang Z. Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems. J Syst Eng Electron. 2009;20(2):321–6.

    MathSciNet  Google Scholar 

  43. Ye J. Some weighted aggregation operators of trapezoidal neutrosophic numbers and their multiple attribute decision making method. 2017;28(2):387–402.

  44. Ye J. Trapezoidal neutrosophic set and its application to multiple attribute decision-making. Neural Comput & Applic. 2015;26(5):1157–66.

    Google Scholar 

  45. Deli I, Subas Y. Single valued neutrosophic numbers and their applications to multi-criteria decision making problem. 2014;http://viXra preprint viXra 1412.0012.

  46. Biswas P, Pramanik S, Giri BC. Value and ambiguity index based ranking method of single-valued trapezoidal neutrosophic numbers and its application to multi-attribute decision making. Neutrosophic Sets and Systems. 2016;12:127–38.

    Google Scholar 

  47. Liang RX, Wang JQ, Zhang HY. Multi-criteria group decision making method based on interdependent inputs of single valued trapezoidal neutrosophic information. Neural Comput & Applic. 2018;30:241–60.

    Google Scholar 

  48. Liang RX, Wang JQ, Zhang HY. Evaluation of e-commerce websites: an integrated approach under a single-valued trapezoidal neutrosophic environment. Knowl-Based Syst. 2017;135:44–59.

    Google Scholar 

  49. Ji P, Zhang HY, Wang JQ. Fuzzy decision-making framework for treatment selection based on the combined QUALIFLEX-TODIM method. Int J Syst Sci. 2017;48(14):3072–86.

    MATH  Google Scholar 

  50. Yager RR. The power average operator. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 2001;31(6):724–731.

  51. Xu ZS, Yager RR. Power-geometric operators and their use in group decision making. IEEE Trans Fuzzy Syst. 2010;18(1):94–105.

    Google Scholar 

  52. Wang JQ, Nie RR, Zhang HY, Chen XH. New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Inf Sci. 2013;251:79–95.

    MathSciNet  MATH  Google Scholar 

  53. Nakahara Y, Sasaki M, Gen M. On the linear programming problems with interval coefficients. Comput Ind Eng. 1992;23(1-4):301–4.

    Google Scholar 

  54. Wan SP, Dong JY. A possibility degree method for interval-valued intuitionistic fuzzy multi-attribute group decision making. J Comput Syst Sci. 2014;80(1):237–56.

    MathSciNet  MATH  Google Scholar 

  55. Wan SP, Dong JY. Power geometric operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making. Appl Soft Comput. 2015;29:153–68.

    Google Scholar 

Download references

Acknowledgments

We are grateful to the editors and anonymous reviewers for their helpful comments and suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 71901226 and 71871228) and the Scientific Research Foundation for Outstanding Youths of Hunan Provincial Education Department in China (No. 17B289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-qiang Wang.

Ethics declarations

All the authors have read and abided by the statement of ethical standards for manuscripts. We declare that (a) The material has not been published in whole or in part elsewhere; (b) The paper is not currently being considered for publication elsewhere; (c) All authors have been personally and actively involved in substantive work leading to the manuscript, and will hold themselves jointly and individually responsible for its content; (d) Authors whose names appear on the submission have contributed sufficiently to the scientific work and, therefore, share collective responsibility and accountability for the results; (e) All sources of funding of all the authors that may be relevant, including current funding of posts and funding for the research, are being reported; (f) There are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Proof of Theorem 2

Proof. We first prove Property (2) and prepare for the proof of the other properties.

  • (A) First,

    $$ {\displaystyle \begin{array}{c}x\left(\alpha, \beta \right)+x\left(\beta, \alpha \right)=\frac{\sum_{i=1}^4\max \left({b}_i-{a}_i,0\right)+\left({b}_4-{a}_1\right)+2\max \left(T\left(\beta \right)-T\left(\alpha \right),0\right)}{\sum_{i=1}^4\left|{b}_i-{a}_i\right|+\left({b}_4-{b}_1\right)+\left({a}_4-{a}_1\right)+2\left|T\left(\beta \right)-T\left(\alpha \right)\right|}\\ {}+\frac{\sum_{i=1}^4\max \left({a}_i-{b}_i,0\right)+\left({a}_4-{b}_1\right)+2\max \left(T\left(\alpha \right)-T\left(\beta \right),0\right)}{\sum_{i=1}^4\left|{a}_i-{b}_i\right|+\left({a}_4-{a}_1\right)+\left({b}_4-{b}_1\right)+2\left|T\left(\alpha \right)-T\left(\beta \right)\right|}\\ {}\begin{array}{c}=\frac{\sum_{i=1}^4\left|{a}_i-{b}_i\right|+\left({a}_4-{b}_1\right)+\left({b}_4-{a}_1\right)+2\left|T\left(\alpha \right)-T\left(\beta \right)\right|}{\sum_{i=1}^4\left|{a}_i-{b}_i\right|+\left({a}_4-{a}_1\right)+\left({b}_4-{b}_1\right)+2\left|T\left(\alpha \right)-T\left(\beta \right)\right|}=1;\\ {}y\left(a,\beta \right)+y\left(\beta, a\right)=1;z\left(a,\beta \right)+z\left(\beta, a\right)=1.\end{array}\end{array}} $$

Second, there are three cases being considered.

  1. (i)

    If x(α, β) < 0, then x(β, α) = 1 − x(α, β) > 1.

    $$ \max \left\{1-\max \left[x\left(\alpha, \beta \right),0\right],0\right\}+\max \left\{1-\max \left[x\left(\beta, \alpha \right),0\right],0\right\}=1+0=1. $$
  2. (ii)

    If 0 ≤ x(α, β) < 1, then 0 < x(β, α) = 1 − x(α, β) ≤ 1.

    $$ {\displaystyle \begin{array}{c}\max \left\{1-\max \left[x\left(\alpha, \beta \right),0\right],0\right\}+\max \left\{1-\max \left[x\left(\beta, \alpha \right),0\right],0\right\}\\ {}=\max \left\{1-x\left(\alpha, \beta \right),0\right\}+\max \left\{1-x\left(\beta, \alpha \right),0\right\}\\ {}=1-x\left(\alpha, \beta \right)+1-x\left(\beta, \alpha \right)=1.\end{array}}. $$
  3. (iii)

    If x(α, β) ≥ 1, then x(β, α) = 1 − x(α, β) ≤ 0.

$$ \max \left\{1-\max \left[x\left(\alpha, \beta \right),0\right],0\right\}+\max \left\{1-\max \left[x\left(\beta, \alpha \right),0\right],0\right\}=0+1=1. $$

Thus, max{1 − max[x(α, β), 0], 0} + max {1 − max[x(β, α), 0], 0} = 1.

Similarly, max{1 − max[y(α, β), 0], 0} + max {1 − max[y(β, α), 0], 0} = 1;

$$ 1-\max \left\{1-\max \left[z\left(\alpha, \beta \right),0\right],0\right\}+1-\max \left\{1-\max \left[z\left(\beta, \alpha \right),0\right],0\right\}=1. $$

Third,

$$ {\displaystyle \begin{array}{c}p\left(\alpha \succ \beta \right)+P\left(\beta \succ \alpha \right)\\ {}=\frac{1}{2+\lambda}\left(\max \left\{1-\max \left[x\left(\alpha, \beta \right),0\right],0\right\}+\lambda \max \left\{1-\max \left[y\left(\alpha, \beta \right),0\right],0\right\}\left.+1-\max \left\{1-\max \left[z\left(\alpha, \beta \right),0\right],0\right\}\right)\right.\\ {}+\frac{1}{2+\lambda}\left(\max \left\{1-\max \left[x\left(\beta, \alpha \right),0\right],0\right\}+\lambda \max \left\{1-\max \left[y\left(\beta, \alpha \right),0\right],0\right\}\right.\left.+1-\max \left\{1-\max \left[z\left(\beta, \alpha \right),0\right],0\right\}\right)\\ {}=\frac{1}{2+\lambda}\left(1+\lambda +1\right)=1.\end{array}} $$

Thus, Property (2) is true.

  • (B) First, max{1 − max[x(α, β), 0], 0} ≥ 0, and max{1 − max[y(α, β), 0], 0} ≥ 0.

    1. (i)

      If 1 − max[z(α, β), 0] > 0, then 1 − max {1 − max[z(α, β), 0], 0} = max[z(α, β), 0] ≥ 0.

    2. (ii)

      If 1 − max[z(α, β), 0] ≤ 0, then 1 − max {1 − max[z(α, β), 0], 0} = 1 − 0 = 1.

Thus, 1 − max {1 − max[z(α, β), 0], 0} ≥ 0

p(α ≻ β) is the sum of max{1 − max[x(α, β), 0], 0} ≥ 0, max{1 − max[y(α, β), 0], 0} ≥ 0, and 1 − max {1 − max[z(α, β), 0], 0} ≥ 0, and, therefore, p(α ≻ β) ≥ 0.

Second, since p(α ≻ β) + p(β ≻ α) = 1, p(α ≻ β) ≤ 1.

Finally, Property (1) is true.

  • (C) We can easily infer p(α ≻ β) = p(β ≻ α) = 0.5 from p(α ≻ β) + p(β ≻ α) = 1, supposing that ai = bi, T(α) = T(β), I(α) = I(β), and F(α) = F(β). Therefore, Property (3) is true.

  • (D) If a1 ≥ b4, T(α) ≥ T(β), I(α) ≥ I(β), and F(α) ≤ F(β), then

\( x\left(\alpha, \beta \right)=\frac{b_4-{a}_1}{\sum_{i=1}^4\left|{b}_i-{a}_i\right|+\left({b}_4-{b}_1\right)+\left({a}_4-{a}_1\right)+2\left|T\left(\beta \right)-T\left(\alpha \right)\right|}\le 0 \), and, similarly, y(α, β) ≤ 0; additionally,

$$ z\left(\alpha, \beta \right)=\frac{\sum_{i=1}^4\left({a}_i-{b}_i\right)+\left({a}_4-{b}_1\right)+2\left(F\left(\beta \right)-F\left(\alpha \right)\right)}{\sum_{i=1}^4\left({a}_i-{b}_i\right)+\left({b}_4-{b}_1\right)+\left({a}_4-{a}_1\right)+2\left(F\left(\beta \right)-F\left(\alpha \right)\right)}\ge 1. $$

Thus, \( p\left(\alpha \succ \beta \right)=\frac{1}{2+\gamma}\left(1+\gamma +1\right)=1 \), and Property (4) holds under the given conditions.

  • (E) According to Minkowski’s inequality, Property (5) can be proven true. However, there are many cases of x(α, β), y(α, β), and z(α, β) being discussed; for instance, x(α, β) < 0, 0 ≤ x(α, β) < 1, and x(α, β) ≥ 1. Thus, the proof is omitted here because of the limited space for publication.

Appendix 2. Proof of Theorem 4

Proof. According to Definition 4, Theorem 4 can be easily proven by using a mathematical induction on n.

  • (A) For n = 2, since

    $$ {\displaystyle \begin{array}{c}\frac{1+G{\left({\alpha}_1\right)}_1}{\sum_{i=1}^2\left(1+G\left({\alpha}_i\right)\right)}{\alpha}_1=\left\langle \left[\tau \left({\alpha}_1\right){a}_{11},\tau \left({\alpha}_1\right){a}_{12},\tau \left({\alpha}_1\right){a}_{13},\tau \left({\alpha}_1\right){a}_{14}\right],\left(T\left({\alpha}_1\right),I\left({\alpha}_1\right),F\left({\alpha}_1\right)\right)\right\rangle\ \mathrm{and}\\ {}\frac{1+G\left({\alpha}_2\right)}{\sum_{i=1}^2\left(1+G\left({\alpha}_i\right)\right)}{\alpha}_2=\left\langle \left[\tau \left({\alpha}_2\right){a}_{21},\tau \left({\alpha}_2\right){a}_{22},\tau \left({\alpha}_2\right){a}_{23},\tau \left({\alpha}_2\right){a}_{24}\right],\left(T\left({\alpha}_2\right),I\left({\alpha}_2\right),F\left({\alpha}_2\right)\right)\right\rangle, \end{array}} $$

then

$$ {\displaystyle \begin{array}{c} SVTNPA\left({\alpha}_1,{\alpha}_2\right)=\frac{1+G\left({\alpha}_1\right)}{\sum_{i=1}^2\left(1+G\left({\alpha}_i\right)\right)}{\alpha}_1\oplus \frac{1+G\left({\alpha}_2\right)}{\sum_{i=1}^2\left(1+G\left({\alpha}_i\right)\right)}{\alpha}_2\\ {}=\left\langle \left[\tau \left({\alpha}_1\right){a}_{11}+\tau \left({\alpha}_2\right){a}_{21},\tau \left({\alpha}_1\right){a}_{12}+\tau \left({\alpha}_2\right){a}_{22},\tau \left({\alpha}_1\right){a}_{13}+\tau \left({\alpha}_2\right){a}_{23},\tau \left({\alpha}_1\right){a}_{14}+\tau \left({\alpha}_2\right){a}_{24}\right]\right.,\\ {}\left.\left(\frac{\varphi \left({\alpha}_1\right)T\left({\alpha}_1\right)+\varphi \left({\alpha}_2\right)T\left({\alpha}_2\right)}{\varphi \left({\alpha}_1\right)+\varphi \left({\alpha}_2\right)},\frac{\varphi \left({\alpha}_1\right)I\left({\alpha}_1\right)+\varphi \left({\alpha}_2\right)I\left({\alpha}_2\right)}{\varphi \left({\alpha}_1\right)+\varphi \left({\alpha}_2\right)},\frac{\varphi \left({\alpha}_1\right)I\left({\alpha}_1\right)+\varphi \left({\alpha}_2\right)I\left({\alpha}_2\right)}{\varphi \left({\alpha}_1\right)+\varphi \left({\alpha}_2\right)}\right)\right\rangle .\end{array}} $$

Therefore, Theorem 4 is true for n = 2.

  • (B) If Formula (18) holds for n = k, then

    $$ {\displaystyle \begin{array}{c} SVTNPA\left({\alpha}_1,{\alpha}_2,\cdots, {\alpha}_n\right)=\overset{n}{\underset{i=1}{\oplus }}\left(\frac{1+G\left({\alpha}_i\right)}{\sum_{i=1}^k\left(1+G\left({\alpha}_i\right)\right)}{\alpha}_i\right)\\ {}\kern10.66em =\left\langle \left[{\sum}_{i=1}^k\left(\tau \left({\alpha}_i\right){a}_{i1}\right),{\sum}_{i=1}^k\left(\tau \left({\alpha}_i\right){a}_{i2}\right),{\sum}_{i=1}^k\left(\tau \left({\alpha}_i\right){a}_{i3}\right),{\sum}_{i=1}^k\left(\tau \left({\alpha}_i\right){a}_{i4}\right)\right]\right.,\\ {}\left.\left(\frac{\sum_{i=1}^k\left(\varphi \left({\alpha}_i\right)T\left({\alpha}_i\right)\right)}{\sum_{i=1}^k\varphi \left({\alpha}_i\right)},\frac{\sum_{i=1}^k\left(\varphi \left({\alpha}_i\right)I\left({\alpha}_i\right)\right)}{\sum_{i=1}^k\varphi \left({\alpha}_i\right)},\frac{\sum_{i=1}^k\left(\varphi \left({\alpha}_i\right)F\left({\alpha}_i\right)\right)}{\sum_{i=1}^k\varphi \left({\alpha}_i\right)}\right)\right\rangle .\end{array}} $$

When n = k + 1, according to the operations described in Definition 4, we have

$$ {\displaystyle \begin{array}{c} SVTNPA\left({\alpha}_1,{\alpha}_2,\cdots, {\alpha}_n\right)=\overset{n}{\underset{i=1}{\oplus }}\left(\frac{1+G\left({\alpha}_i\right)}{\sum_{i=1}^n\left(1+G\left({\alpha}_i\right)\right)}{\alpha}_i\right)\oplus \frac{1+G\left({\alpha}_{k+1}\right)}{\sum_{i=1}^n\left(1+G\left({\alpha}_i\right)\right)}{\alpha}_{k+1}\\ {}\kern12.66em =\left\langle \left[{\sum}_{i=1}^{k+1}\left(\tau \left({\alpha}_i\right){a}_{i1}\right),{\sum}_{i=1}^{k+1}\left(\tau \left({\alpha}_i\right){a}_{i2}\right),{\sum}_{i=1}^{k+1}\left(\tau \left({\alpha}_i\right){a}_{i3}\right),{\sum}_{i=1}^{k+1}\left(\tau \left({\alpha}_i\right){a}_{i4}\right)\right]\right.,\\ {}\left.\left(\frac{\sum_{i=1}^{k+1}\left(\varphi \left({\alpha}_i\right)T\left({\alpha}_i\right)\right)}{\sum_{i=1}^{k+1}\varphi \left({\alpha}_i\right)},\frac{\sum_{i=1}^{k+1}\left(\varphi \left({\alpha}_i\right)I\left({\alpha}_i\right)\right)}{\sum_{i=1}^{k+1}\varphi \left({\alpha}_i\right)},\frac{\sum_{i=1}^{k+1}\left(\varphi \left({\alpha}_i\right)F\left({\alpha}_i\right)\right)}{\sum_{i=1}^{k+1}\varphi \left({\alpha}_i\right)}\right)\right\rangle .\end{array}} $$

Therefore, Theorem 4 is also true for n = k + 1.

Based on Part (A) and (B), Theorem 4 holds for any n.

Appendix 3. Proof of Theorem 5

Proof. Because \( Supp\left({\alpha}_i,{\alpha}_j\right)=c\ \left(c\in \left[0,1\right],\kern0.5em i\ne j,j=1,2,\cdots, n\right),\mathrm{we}\ \mathrm{have}\ \mathrm{G}\left({\alpha}_i\right)={\sum}_{j=1,j\ne i}^n Sup\left(\left({\alpha}_i,{\alpha}_j\right)\right)=\left(n-1\right)c \).

Therefore,\( SVTNPA\left({\alpha}_1,{\alpha}_2,\cdots, {\alpha}_n\right)=\overset{n}{\underset{i=1}{\oplus }}\left(\frac{1+G{\left({\alpha}_i\right)}_i}{\sum_{i=1}^n\left(1+G\left({\alpha}_i\right)\right)}{\alpha}_i\right)=\overset{n}{\underset{i=1}{\oplus }}\left(\frac{1+\left(n-1\right)c}{\sum_{i=1}^n\left(1+\left(n-1\right)c\right)}{\alpha}_i\right)=\frac{1}{n}\overset{n}{\underset{i=1}{\oplus }}\left({\alpha}_i\right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Jq. & Ma, Yx. Possibility Degree and Power Aggregation Operators of Single-Valued Trapezoidal Neutrosophic Numbers and Applications to Multi-Criteria Group Decision-Making. Cogn Comput 13, 657–672 (2021). https://doi.org/10.1007/s12559-020-09736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-020-09736-2

Keywords

Navigation