Skip to main content
Log in

First arboreal 'pelycosaurs' (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny

PalZ Aims and scope Submit manuscript

Abstract

A new fossil amniote from the Fossil Forest of Chemnitz (Sakmarian-Artinskian transition, Germany) is described as Ascendonanus nestleri gen. et sp. nov., based on five articulated skeletons with integumentary preservation. The slender animals exhibit a generalistic, lizard-like morphology. However, their synapsid temporal fenestration, ventrally ridged centra and enlarged iliac blades indicate a pelycosaur-grade affiliation. Using a renewed data set for certain early amniotes with a similar typology found Ascendonanus to be a basal varanopid synapsid. This is the first evidence of a varanopid from Saxony and the third from Central Europe, as well as the smallest varanopid at all. Its greatly elongated trunk, enlarged autopodia and strongly curved unguals, along with taphonomical observations, imply an arboreal lifestyle in a dense forest habitat until the whole ecosystem was buried under volcanic deposits. Ascendonanus greatly increases the knowledge on rare basal varanopids; it also reveals a so far unexpected ecotype of early synapsids. Its integumentary structures present the first detailed and soft tissue skin preservation of any Paleozoic synapsid. Further systematic results suggest a varanodontine position for Mycterosaurus, the monophyly of South African varanopids including Anningia and the distinction of a skeletal aggregation previously assigned to Heleosaurus, now renamed as Microvaranops parentis gen. et sp. nov.

Kurzfassung

Basierend auf fünf artikulierten Skeletten mit Hauterhaltung wird ein neuer, fossiler Amniot aus dem Versteinerten Wald von Chemnitz (Sakmarium–Artinskium-Grenzbereich, Deutschland) beschrieben als Ascendonanus nestleri gen. et sp. nov. Die schlanken Tiere sind von generalistischer, echsenhafter Gestalt. Demgegenüber zeigen die synapsiden Schläfenfenster, ventral gekantete Zentren und vergrößerte Iliumblätter eine Zugehörigkeit zur Pelycosaurier-Stufe an. Unter Anwendung eines erneuerten Datensatzes für ausgewählte frühe Amnioten ähnlicher Typologie wird Ascendonanus zu basalen Varanopiden gestellt. Damit liegt der erste Nachweis eines Varanopiden aus Sachsen und der dritte aus Mitteleuropa vor, zudem der kleinste Varanopide überhaupt. Sein besonders verlängerter Rumpf, vergrößerte Autopodien und stark gekrümmte Krallen sowie taphonomische Beobachtungen legen eine arboreale Lebensweise inmitten eines dichten Waldhabitats nahe, bis das gesamte Ökosystem von vulkanischen Ablagerungen verschüttet wurde. Ascendonanus erweitert die Kenntnis der seltenen basalen Varanopiden enorm, zumal er einen bei frühen Synapsiden bisher unerwarteten Ökotyp aufdeckt. Die Integumentstrukturen stellen die ersten detaillierten und durch Weichteile erhaltenen Hautfunde aller paläozoischen Synapsiden dar. Weitergehende systematische Ergebnisse deuten an: eine varanodontine Position für Mycterosaurus, die Monophylie südafrikanischer Varanopiden einschließlich Anningia, sowie die Unterscheidung einer vormals zu Heleosaurus gestellten Skelettaggregation, nun benannt als Microvaranops parentis gen. et sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  • Anderson, J.S., and R.R. Reisz. 2004. Pyozia mesenensis, a NEW, Small Varanopid (Synapsida, Eupelycosauria) from Russia: “Pelycosaur” Diversity in the Middle Permian. Journal of Vertebrate Paleontology 24 (1): 173–179.

    Google Scholar 

  • Appleton, P., J. Malpas, B.A. Thomas, and C.J. Cleal. 2011. The Brymbo Fossil Forest. Geology Today 27: 107–113.

    Google Scholar 

  • Benson, R.B.J. 2012. Interrelationships of Basal Synapsids: Cranial and Postcranial Morphological Partitions Suggest Different Topologies. Journal of Systematic Palaeontology 10: 601–624.

    Google Scholar 

  • Berman, D.S., and R.R. Reisz. 1982. Restudy of Mycterosaurus longiceps (Reptilia, Pelycosauria) from the Lower Permian of Texas. Annals of Carnegie Museum 51: 423–453.

    Google Scholar 

  • Berman, D.S., A.C. Henrici, S.S. Sumida, T. Martens, and V. Pelletier. 2014. First European Record of a Varanodontine (Synapsida: Varanopidae): Member of a Unique Early Permian Upland Paleoecosystem, Tambach Basin, Central Germany. In Early Evolutionary History of the Synapsida, eds. C.F. Kammerer, K.D. Angielczyk, and J. Fröbisch, 69–86. New York: Springer. (Vertebrate Paleobiology and Paleoanthropology Series).

  • Bernardi, M., S. Kearns, F. Zorzi, A. Lorenzetti, and M. Fornasiero. 2014. Tridentinosaurus is back. Beginning a Complete Reexamination of the Oldest Reptile of the alps. Giornate di Paleontologia SPI 2014, Abstract volume: 86–87.

  • Berry, C.M., and J.E.A. Marshall. 2015. Lycopsid Forests in the Early Late Devonian Paleoequatorial Zone of Svalbard. Geology 43 (12): 1043–1046.

    Google Scholar 

  • Botha-Brink, J., and S.P. Modesto. 2007. A Mixed-Age classed “pelycosaur” Aggregation from South Africa: Earliest Evidence of Parental Care in Amniotes? Proceedings of the Royal Society B 274: 2829–2834.

    Google Scholar 

  • Botha-Brink, J., and S.P. Modesto. 2009. Anatomy and Relationships of the Middle Permian Varanopid Heleosaurus scholtzi Based on a Social Aggregation from the Karoo Basin of South Africa. Journal of Vertebrate Paleontology 29 (2): 389–400.

    Google Scholar 

  • Boy, J.A. 1972. Die Branchiosaurier (Amphibia) des saarpfälzischen Rotliegenden (Perm, SW-Deutschland. Abhandlungen des Hessischen Landesamtes für Bodenforschung 65: 1–137.

    Google Scholar 

  • Boy, J.A. 1980. Die Tetrapodenfauna (Amphibia, Reptilia) des saarpfälzischen Rotliegenden (Unter-Perm; SW-Deutschland). 2. Tersomius graumanni n. sp. Mainzer Geowissenschaftliche Mitteilungen 8: 17–30.

    Google Scholar 

  • Boy, J.A. 1985. Über Micropholis, den letzten Überlebenden der Dissorophoidea (Amphibia, Temnosponyli; Unter-Trias). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1985 (1): 29–45.

    Google Scholar 

  • Boy, J.A. 1995. Über die Micromelerpetontidae (Amphibia: Temnospondyli). 1. Morphologie und Palökologie des Micromelerpeton credneri (Unter-Perm; SW-Deutschland). Paläontologische Zeitschrift 69: 429–457.

    Google Scholar 

  • Boy, J.A. 2002. Über Micromelerpetontidae (Amphibia: Temnosponyli). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 225 (3): 425–452.

    Google Scholar 

  • Boy, J.A., and H.-H. Sues. 2000. Branchiosaurs: Larvae, Metamorphosis and Heterochrony in Temnospondyls and Seymouriamorphs. In Amphibian Biology, 4, Palaeontology: The Evolutionary History of Amphibians, eds. H. Heatwole, and R.L. Carroll, 1150–1197. NSW, Australia: Surrey Beatty & Sons, Chipping Norton.

  • Bradshaw, S.D. 2003. Vertebrate Ecophysiology: An Introduction to its Principles and Applications. New York: Cambridge University Press.

    Google Scholar 

  • Brinkman, D., and D.A. Eberth. 1983. The Interrelationships of Pelycosaurs. Breviora 473: 1–35.

    Google Scholar 

  • Brocklehurst, N., and J. Fröbisch. 2017. A re-Examination of the Enigmatic Russian Tetrapod Phreatophasma aenigmaticum and its Evolutionary Impications. Fossil Record 20: 87–93.

    Google Scholar 

  • Brocklehurst, N., C.F. Kammerer, and J. Fröbisch. 2013. The early Evolution of Synapsids, and the Influence of Sampling on Their Fossil Record. Paleobiology 39: 470–490.

    Google Scholar 

  • Brocklehurst, N., R.R. Reisz, V. Fernandez, and J. Fröbisch. 2016. A Re-Description of ‘Mycterosaurussmithae, an Early Permian Eothyridid, and its Impact on the Phylogeny of Pelycosaurian-Grade Synapsids. PLoS ONE 11 (6): 1–27; e0156810. https://doi.org/10.1371/journal.pone.0156810.

  • Broili, F., and J. Schröder. 1937. Beobachtungen an Wirbeltieren der Karrooformation. XXV. Über Micropholis Huxley. XXVI. Über Lydekkerina Broom. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Abteilung 1937: 19–57.

  • Broom, R. 1907. On some new fossil reptiles from the Karroo beds of Victoria West, South Africa. Transactions of the South African Philosophical Society 18 (1): 31–42.

  • Bulanov, V.V., and A.G. Sennikov. 2015. Glaurung schneideri gen. et sp. nov., a New Weigeltisaurid (Reptilia) from the Kupfershiefer (Upper Permian) of Germany. Paleontological Journal 49 (12): 1353–1364.

    Google Scholar 

  • Campione, N., and R.R. Reisz. 2010. Varanops brevirostris (Eupelycosauria: Varanopidae) from the Lower Permian of Texas, with discussion of Varanopid Morphology and Interrelationsships. Journal of Vertebrate Paleontology 30 (3): 724–746.

    Google Scholar 

  • Carroll, R.L. 1976. Eosuchians and the Origin of Archosaurs. In Essays on Palaeontology in Honour of Louis Shano Russell, ed. C.S. Churcher, 58–79. Athlon: Royal Ontario Museum. (Life Sciences Miscellaneous Publications).

  • Carroll, R.L., and D. Baird. 1972. Carboniferous Stem-Reptiles of the Family Romeriidae. Bulletin of the Museum of Comparative Zoology 143 (5): 321–363.

    Google Scholar 

  • Colbert, E.H. 1966. A Gliding Reptile from the Triassic of New Jersey. American Museum Novitates 2246: 1–23.

    Google Scholar 

  • Crandell, K.E., A. Herrel, M. Sasa, J.B. Losos, and K. Autumn. 2014. Stick or Grip? Co-evolution of Adhesive Toepads and Claws in Anolis Lizard. Zoology 117: 363–369.

    Google Scholar 

  • Credner, H. 1881. Die Stegocephalen des Plauen’schen Grundes bei Dresden, 2. Theil. Zeitschrift der Deutschen Geologischen Gesellschaft 33: 574–603.

    Google Scholar 

  • Credner, H. 1886. Die Stegocephalen des Plauen’schen Grundes bei Dresden, 6. Theil. Zeitschrift der Deutschen Geologischen Gesellschaft 38: 576–633.

    Google Scholar 

  • Daly, E. 1994. The Amphibamidae (Amphibia: Temnospondyli), with a description of a new genus from the Upper Pennsylvanian of Kansas (pp. 1–59), vol. 85. The University of Kansas, Miscellaneous Publications.

  • DeMar, R. 1970. A primitive pelycosaur from the Pennsylvanian of Illinois. Journal of Paleontology 44 (1): 154–163.

    Google Scholar 

  • Dilkes, D.W., and R.R. Reisz. 1996. First Record of a Basal Synapsid (‘Mammal-Like Reptile‘) in Gondwana). Proceedings of the Royal Society B 263: 1165–1170.

    Google Scholar 

  • DiMichele, W.A., and H.J. Falcon-Lang. 2011. Pennsylvanian ‘Fossil Forests’ in Growth Position (T0 assemblages): Origin, Taphonomic bias and Palaeoecological Insights. Journal of the Geological Society 168: 585–605. https://doi.org/10.1144/0016-76492010-103.

    Google Scholar 

  • Dunlop, J.A., and R. Rößler. 2013. The youngest trigonotarbid Permotarbus schuberti n. gen., n. sp. from the Permian of Chemnitz in Germany. Fossil Record 16: 229–243.

    Google Scholar 

  • Dunlop, J.A., D.A. Legg, P.A. Selden, V. Fet, J.W. Schneider, and R. Rößler. 2016. Permian scorpions from the Petrified Forest of Chemnitz. Germany. BMC Evolutionary Biology 16: 72. https://doi.org/10.1186/s12862-016-0634-z.

    Google Scholar 

  • Eberth, D.A., and D. Brinkman. 1983. Ruthiromia elcobriensis, a new pelycosaur from El Cobre Canyon, New Mexico. Breviora 474: 1–26.

    Google Scholar 

  • Evans, S.E. 1982. The gliding reptiles of the Upper Permian. Zoological Journal of the Linnean Society 76 (2): 97–123.

    Google Scholar 

  • Evans, S.E. 1987. A review of the Upper Permian genera Coelurosauravus, Weigeltisaurus and Gracilisaurus (Reptilia: Diapsida). Zoological Journal of the Linnean Society 90: 275–303.

    Google Scholar 

  • Falcon-Lang, H.J., F. Kurzawe, and S.G. Lucas. 2016. A Late Pennsylvanian Coniferopsid Forest in Growth Position, Near Socorro, New Mexico, U.S.A.: Tree Systematics and Palaeoclimatic Significance. Review of Palaeobotany and Palynology 225: 67–83.

    Google Scholar 

  • Falconnet, J. 2013. The Sphenacodontid Synapsid Neosaurus cynodus, and Related Material, from the Permo-Carboniferous of France. Acta Palaeontologica Polonica 60 (1): 169–182.

    Google Scholar 

  • Feng, Z., R. Rößler, V. Annacker, and J.-Y. Yang. 2014. Micro-CT Investigation of a Seed Fern (probable medullosan) Fertile Pinna from the Early Permian Petrified Forest in Chemnitz, Germany. Gondwana Research 26: 1208–1215. https://doi.org/10.1016/j.gr.2013.08.005.

    Google Scholar 

  • Feng, Z., T. Zierold, and R. Rößler. 2012. When Horsetails Became Giants. Chinese Science Bulletin 57: 2285–2288.

    Google Scholar 

  • Frenzel, D. 1759. Zuverlässige Nachricht von einem zu Steine gewordenen Baume, nebst dessen eigentlicher Abbildung. Dresdnisches Magazin 1: 39–47, Dresden: Michael Gröll.

  • Fröbisch, J., and R.R. Reisz. 2009. The Late Permian herbivore Suminia and the Early Evolution of Arboreality in Terrestrial Vertebrae Ecosystems. Proceedings of the Royal Society B 276: 3611–3618. https://doi.org/10.1098/rspb.2009.0911.

    Google Scholar 

  • Fröbisch, J., and R.R. Reisz. 2011. The Postcranial Anatomy of Suminia getmanovi (Synapsida: Anomodontia), the Earliest known Arboreal Tetrapod. Zoological Journal of the Linnean Society 162: 661–698.

    Google Scholar 

  • Fröbisch, J., R.R. Schoch, J. Müller, T. Schindler, and D. Schweiss. 2011. A New Basal Sphenacodontid Synapsid from the Late Carboniferous of the Saar-Nahe Basin. Germany. Acta Palaeontologica Polonica 56 (1): 113–120.

    Google Scholar 

  • Heyler, D. 1969. Vertébrés de l’Autunien de France. In Cahiers de Paléontologie, ed. J.P. Lehman, 1–259. Paris: CNRS.

    Google Scholar 

  • Kemp, T.S. 1982. Mammal-like reptiles and the origin of mammals. London: Academic Press.

    Google Scholar 

  • Kretzschmar, R., V. Annacker, S. Eulenberger, B. Tunger, and R. Rößler. 2008. Erste Wissenschaftliche Grabung im Versteinerten Wald von Chemnitz – ein Zwischenbericht. Freiberger Forschungshefte C 528: 25–55.

    Google Scholar 

  • Langston, W. 1965. Oedaleops campi (Reptilia: Pelycosauria) New genus and species from the Lower Permian of New Mexico, and the family Eothyrididae. Bulletin of the Texas Memorial Museum 9: 1–46.

    Google Scholar 

  • Langston, W., and R.R. Reisz. 1981. Aerosaurus wellesi, new species, a varanopseid mammal-like reptile (Synapsida: Pelycosauria) from the Lower Permian of New Mexico. Journal of Vertebrate Paleontology 1 (1): 73–96.

    Google Scholar 

  • Laurin, M. 1991. The osteology of a Lower Permian eosuchian from Texas and a review of diapsid phylogeny. Zoological Journal of the Linnean Society 101: 59–95.

    Google Scholar 

  • Leonardi, P. 1959. Tridentinosaurus antiquus Gb. Dal Piaz, rettile protorosauro permiano del Trentino orientale. Memorie degli Instituti di Geologia e Mineralogia dell’Università di Padova XXI: 3–15.

  • Looy, C.V., H. Kerp, I.A.P. Duijnstee, and W.A. DiMichele. 2014. The late Paleozoic ecological-evolutionary laboratory, a land-plant fossil record perspective. The Sedimentary Record 12 (4): 4–10.

    Google Scholar 

  • Luthardt, L., R. Rößler, and J.W. Schneider. 2016. Palaeoclimatic and Site-Specific Conditions in the Early Permian Fossil Forest of Chemnitz—Sedimentological, Geochemical and Palaeobotanical Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 441: 627–652.

    Google Scholar 

  • Luthardt, L., and R. Rößler. 2017. Fossil Forest Reveals Sunspot Activity in the Early Permian. Geology 45 (3): 279–282. https://doi.org/10.1130/G38669.1.

    Google Scholar 

  • Maddin, H.C., and R.R. Reisz. 2007. The Morphology of the Terminal Phalanges in Permo-Carboniferous Synapsids: An Evolutionary Perspective. Canadian Journal of Earth Sciences 44: 267–274.

    Google Scholar 

  • Maddin, H.C., D.C. Evans, and R.R. Reisz. 2006. An Early Permian Varanodontine Varanopid (Synapsida: Eupelycosauria) from the Richards Spur locality, Oklahoma. Journal of Vertebrate Paleontology 26 (4): 957–966.

    Google Scholar 

  • Maddin, H.C., C.A. Sidor, and R.R. Reisz. 2008. Cranial Anatomy of Ennatosaurus tecton (Synapsida: Caseidae) from the Middle Permian of Russia and the Evolutionary Relationships of Caseidae. Journal of Vertebrate Paleontology 28 (1): 160–180.

    Google Scholar 

  • Modesto, S.P., and R.R. Reisz. 2002. An Enigmatic New Diapsid Reptile from the Upper Permian of Eastern Europe. Journal of Vertebrate Paleontology 22 (4): 851–855.

    Google Scholar 

  • Modesto, S., C.A. Sidor, B.S. Rubidge, and J. Welman. 2001. A second varanopseid skull from the Upper Permian of Sout Africa: implications for Late Permian ‘pelycosaur‘evolution. Lethaia 24: 249–259.

    Google Scholar 

  • Modesto, S.P., R.M.H. Smith, N.E. Campione, and R.R. Reisz. 2011. The last “pelycosaur“: a varanopid synapsid from the Pristerognathus Assemblage Zone, Middle Permian of South Africa. Naturwissenschaften 98: 1027–1034.

    Google Scholar 

  • Mones, A. 1989. Nomen dubium vs. nomen vanum. Journal of Vertebrate Paleontology 9 (2): 232–234.

    Google Scholar 

  • Müller, J., T.M. Scheyer, J.J. Head, P.M. Barrett, I. Werneburg, P.G.P. Ericson, D. Pol, and M.R. Sánchez-Villagra. 2010. Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proceedings of the National academy of Sciences of the United States of America 107: 2118–2123.

    Google Scholar 

  • Olson, E.C. 1965. New Permian Vertebrates from the Chickasha Formation in Oklahoma. Circular Oklahoma Geological Survey 70: 5–70.

    Google Scholar 

  • Olson, E.C. 1974. On the source of therapsids. Annals of the South African Museum 64: 27–46.

    Google Scholar 

  • Opluštil, S., J. Pšenička, J. Bek, J. Wang, Z. Feng, M. Libertín, Z. Šimůnek, J. Bureš, and J. Drábková. 2014. T0 peat-forming plant assemblage preserved in growth position by volcanic ash-fall: A case study from the Middle Pennsylvanian of the Czech Republic. Bulletin of Geosciences 89 (4): 773–818. https://doi.org/10.3140/bull.geosci.1499.

    Google Scholar 

  • Osborn, H.F. 1903. On the primary division of the Reptilia into two sub-classes, Synapsida and Diapsida. Science 17 (424): 275–276.

  • Paton, R.L. 1974. Lower Permian pelycosaurs from the English Midlands. Palaeontology 17 (3): 541–552.

    Google Scholar 

  • Pelletier, V. 2014. Postcranial Description and Reconstruction of the Varanodontine Varanopid Aerosaurus wellesi (Synapsida: Eupelycosauria). In Early Evolutionary History of the Synapsida, eds. C.F. Kammerer, K.D. Angielczyk, and J. Fröbisch, 53-68. New York: Springer. (Vertebrate Paleobiology and Paleoanthropology Series).

  • Prantl, F. 1943. Vzácný nález v poravském permokarbonu. Věda přírodní 22 (4): 93–97.

    Google Scholar 

  • Reisz, R.R. 1972. Pelycosaurian reptiles from the Middle Pennsylvanian of North America. Bulletin of the Museum of Comparative Zoology 144 (2): 27–62.

    Google Scholar 

  • Reisz, R.R. 1980. The Pelycosauria: A Review of Phylogenetic Relationships. Systematics Association Special 15: 553–591.

    Google Scholar 

  • Reisz, R.R. (1986): Pelycosauria. Handbuch der Paläoherpetologie, Part 17A. Stuttgart: Gustav Fischer Verlag.

  • Reisz, R.R., and D.S. Berman. 2001. The Skull of Mesenosaurus romeri, a Small Varanopseid (Synapsida: Eupelycosauria) from the Upper Permian of the Mezen River Basin. Northern Russia. Annals of Carnegie Museum 70 (2): 113–132.

    Google Scholar 

  • Reisz, R.R., and D.W. Dilkes. 1992. The Taxonomic Position of Anningia megalops, a small amniote from the Permian of South Africa. Canadian Journal of Earth Sciences 29: 1605–1608.

    Google Scholar 

  • Reisz, R.R., and D.W. Dilkes. 2003. Archaeovenator hamiltonensis, a new varanopid (Synapsida: Eupelycosauria) from the Upper Carboniferous of Kansas. Canadian Journal of Earth Sciences 40: 667–678.

    Google Scholar 

  • Reisz, R.R., and J. Fröbisch. 2014. The Oldest Caseid Synapsid from the Late Pennsylvanian of Kansas, and the Evolution of Herbivory in Terrestrial Vertebrates. PLoS ONE 9 (4): 1–9; e94518. https://doi.org/10.1371/journal.pone.0094518.

  • Reisz, R.R., and M. Laurin. 2004. A reevaluation of the enigmatic Permian synapsid Watongia and of its stratigraphic significance. Canadian Journal of Earth Sciences 41: 377–386.

    Google Scholar 

  • Reisz, R.R., and S.P. Modesto. 2007. Heleosaurus scholtzi from the Permian of South Africa: a varanopid synapsid, not a diapsid reptile. Journal of Vertebrate Paleontology 27 (3): 734–739.

    Google Scholar 

  • Reisz, R.R., and L.A. Tsuji. 2006. An articulated skeleton of Varanops with bite marks: the oldest known evidence of scavenging among terrestrial vertebrate. Journal of Vertebrate Paleontology 26 (4): 1021–1023.

    Google Scholar 

  • Reisz, R.R., H. Wilson, and D. Scott. 1997. Varanopseid Synapsid Skeletal Elements from Richards Spur, a Lower Permian Fissure Fill Near Fort Sill, Oklahoma. Oklahoma Geology Notes 57 (5): 160–170.

    Google Scholar 

  • Reisz, R.R., D.W. Dilkes, and D.S. Berman. 1998. Anatomy and Relationships of Elliotsmithia longiceps Broom, a Small Synapsid (Eupelycosauria: Varanopseidae) from the Late Permian of South Africa. Journal of Vertebrate Paleontology 18 (3): 602–611.

    Google Scholar 

  • Reisz, R.R., S.J. Godfrey, and D. Scott. 2009. Eothyris and Oedaleops: Do These Early Permian Synapsids from Texas and New Mexico form a Clade? Journal of Vertebrate Paleontology 29 (1): 39–47.

    Google Scholar 

  • Reisz, R.R., M. Laurin, and D. Marjanović. 2010. Apsisaurus witteri from the Lower Permian of Texas: yet another small varanopid synapsid, not a diapsid. Journal of Vertebrate Paleontology 30 (5): 1628–1631.

    Google Scholar 

  • Reisz, R.R., H.C. Maddin, J. Fröbisch, and J. Falconnet. 2011a. A New Large Caseid (Synapsida, Caseasauria) from the Permian of Rodez (France), Including a reappraisal of “Casearutena Sigogneau-Russell and Russell, 1974. Geodiversitas 33: 227–246.

    Google Scholar 

  • Reisz, R.R., S.P. Modesto, and D.M. Scott. 2011b. A New Early Permian Reptile and its Significance in Early Diapsid Evolution. Proceedings of the Royal Society B 278: 3731–3737.

    Google Scholar 

  • Romano, M., and U. Nicosia. 2014. Alierasaurus ronchii, gen. et sp. nov., a Caseid from the Permian of Sardinia, Italy. Journal of Vertebrate Paleontology 34: 900–913.

    Google Scholar 

  • Romano, M., and U. Nicosia. 2015. Cladistic Analysis of Caseidae (Caseasauria, Synapsida): Using Gap-Weighting Method to Include Taxa Based on Poorly known Specimens. Palaeontology 58: 1109–1130.

    Google Scholar 

  • Romer, A.S. 1937. New genera and species of pelycosaurian reptiles. Proceedings of the New England Zoölogical Club 16: 89–96.

  • Romer, A.S., and L.I. Price. 1940. Review of the Pelycosauria. Geological Society of America Special Papers 28: 1–538.

    Google Scholar 

  • Ronchi, A., E. Sacchi, M. Romano, and U. Nicosia. 2011. A Huge Caseid Pelycosaur from North-Western Sardinia and its Bearing on European Permian Stratigraphy and Palaeobiogeography. Acta Palaeontologica Polonica 56: 723–738.

    Google Scholar 

  • Rößler, R., V. Annacker, R. Kretzschmar, S. Eulenberger, and B. Tunge. 2008. Auf Schatzsuche in Chemnitz—Wissenschaftliche Grabungen ‘08. Veröffentlichungen des Museums für Naturkunde Chemnitz 31: 5–44.

    Google Scholar 

  • Rößler, R., R. Kretzschmar, V. Annacker, and S. Mehlhorn. 2009. Auf Schatzsuche in Chemnitz—Wissenschaftliche Grabungen ‘09. Veröffentlichungen des Museums für Naturkunde Chemnitz 32: 25–46.

    Google Scholar 

  • Rößler, R., R. Kretzschmar, V. Annacker, S. Mehlhorn, M. Merbitz, J.W. Schneider, and L. Luthardt. 2010. Auf Schatzsuche in Chemnitz—Wissenschaftliche Grabungen ‘10. Veröffentlichungen des Museums für Naturkunde Chemnitz 33: 27–50.

    Google Scholar 

  • Rößler, R., Z. Feng, and R. Noll. 2012a. The Largest Calamite and its Growth Architecture—Arthropitys bistriata from the Permian Petrified Forest of Chemnitz. Review of Palaeobotany and Palynology 185: 64–78.

    Google Scholar 

  • Rößler, R., T. Zierold, Z. Feng, R. Kretzschmar, M. Merbitz, V. Annacker, and J.W. Schneider. 2012b. A Snapshot of an Early Permian Ecosystem Preserved by Explosive Volcanism: New Results from the Petrified Forest of Chemnitz, Germany. Palaois 27: 814–834.

    Google Scholar 

  • Rößler, R., M. Merbitz, V. Annacker, L. Luthardt, R. Noll, R. Neregato, and R. Rohn. 2014. The Root Systems of Permian Arborescent Sphenopsids: Evidence from the Northern and Southern Hemispheres. Palaeontographica B 291 (4–6): 65–107.

    Google Scholar 

  • Sansom, R.S., S.E. Gabbott, and M.A. Purnell. 2010. Non-Random Decay of Chordate Characters Causes Bias in Fossil Interpretation. Nature 463: 797–800.

    Google Scholar 

  • Schaumberg, G. 1986. Bemerkungen zu einem Neufund von Weigeltisaurus jaekeli (Weigelt) im nordhessischen Kupferschiefer. Paläontologische Zeitschrift 60 (3/4): 319–327.

    Google Scholar 

  • Schneider, J.W., F. Körner, M. Roscher, and U. Kroner. 2006. Permian Climate Development in the Northern Peri-Tethys Area—the Lodève basin, French Massif Central, Compared in a European and Global Context. Palaeogeography, Palaeoclimatology, Palaeoecology 240: 161–183.

    Google Scholar 

  • Schneider, J.W., R. Rößler, and F. Fischer. 2012. Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken, ed. Deutsche Stratigraphische Kommission. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61: 530–588.

    Google Scholar 

  • Scott, A.C. 2001. Roasted alive in the Carboniferous. Geoscientist 11 (3): 4–7.

    Google Scholar 

  • Shear, W.A., P.A. Selden, W.D.I. Rolfe, and P.M., Bonamo, and J.G. Grierson. 1987. New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida, Trigonotarbida). American Museum Novitates 2901: 1–74.

    Google Scholar 

  • Sidor, C.A. 1996. Early Synapsid Evolution, With Special Reference to the Caseasauria. Journal of Vertebrate Paleontology 16 (3): A65–66.

    Google Scholar 

  • Sidor, C.A. 2001. Simplification as a trend in synapsid cranial evolution. Evolution 55 (7): 1419–1442.

    Google Scholar 

  • Sidor, C.A., J.A. Hopson, K.D. Angielczyk, S.J. Nesbitt, B.R. Peecook, R. Smith, J. Steyer, N.J. Tabor, and S. Tolan. 2016: A new species of traversodont cynodont with tritylodont-like features and possible arboreal adaptations from the upper Ntawere Formation, Northeastern Zambia. Society of Vertebrate Paleontology 76 th Annual Meeting Program & Abstracts: 224.

  • Spielmann, J.A., and S.G. Lucas. 2010. Re-evaluation of Ruthiromia elcobriensis (Eupelycosauria: Ophiacodontidae?) from the Lower Permian (Seymourian?) of Cañon del Cobre, Northern New Mexico. In Carboniferous-Permian transition in Cañon del Cobre, eds. S.G. Lucas, J.W. Schneider, and J.A. Spielmann, New Mexico Museum of Natural History and Science Bulletin 49: 151–158.

  • Spielmann, J.A., A.B. Heckert, and S.G. Spencer. 2005. The late Triassic archosauromorph Trilophosaurus as an arboreal climber. Revista Italiana di Palaeontologia e Stratigrafia 111 (3): 395–412.

    Google Scholar 

  • Spindler, F. 2014. Reviewing the Question of the Oldest Therapsid. Freiberger Forschungshefte C 548 (22): 1–7.

    Google Scholar 

  • Spindler, F. 2015. The basal Sphenacodontiasystematic revision and evolutionary implications. PhD thesis, TU Bergakademie Freiberg, 1–385. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-171748.

  • Spindler, F., and R. Werneburg. 2016. Headless in the Permian – a well-preserved amniote postcranium from Thuringia. In Fossils: Key to evolution, stratigraphy and palaeoenvironments (87th Annual Conference of the Paläontologische Gesellschaft), eds. B. Niebuhr, M. Wilmsen, L. Kunzmann, and C. Stefen, C., p. 147. Dresden.

  • Spindler, F., J. Falconnet, and J. Fröbisch. 2016. Callibrachion and Datheosaurus, Two Historical and Previously Mistaken Basal Caseasaurian Synapsids From Europe. Acta Palaeontologica Polonica 61 (3): 597–616.

    Google Scholar 

  • Stein, K., C. Palmer, P.G. Gill, and M.J. Benton. 2008. The Aerodynamics of the British Late Triassic Kuehneosauridae. Palaeontology 51 (4): 967–981.

    Google Scholar 

  • Stein, W.E., C.M. Berry, L. Van Aller Hernick, and F. Mannolini. 2012. Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483: 78–81. https://doi.org/10.1038/nature10819.

    Google Scholar 

  • Sterzel, J.T. 1875. Die fossilen Pflanzen des Rothliegenden von Chemnitz in der Geschichte der Paläontologie. Berichte der Naturwissenschaftlichen Gesellschaft Chemnitz 5: 71–243.

    Google Scholar 

  • Sumida, S.S. 1989. Reinterpretation of Vertebral Structure in the Early Permian Pelycosaur Varanosaurus acutirostris (Amniota, Synapsida). Journal of Vertebrate Paleontology 9 (4): 451–458.

    Google Scholar 

  • Sumida, S.S., V. Pelletier, and D.S. Berman. 2014. New Information on the Basal Pelycosaurian-grade Synapsid Oedaleops. In Early Evolutionary History of the Synapsida, eds. C.F. Kammerer, K.D. Angielczyk, and J. Fröbisch, 7–23. New York: Springer (Vertebrate Paleobiology and Paleoanthropology Series).

  • Swofford, D.L. 2001. PAUP*: Phylogenetic Analysis Using Parsimony. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Tulli, M.J., F. Cruz, A. Herrel, B. Vanhooydonck, and V. Abdala. 2009. The Interplay Between Claw Morphology and Microhabitat use in Neotropical Iguanian Lizards. Zoology 112 (5): 379–392.

    Google Scholar 

  • Voigt, S., J. Fischer, T. Schindler, M. Wuttke, F. Spindler, and L. Rinehart. 2014. On a Potential Fossil Hotspot for Pennsylvanian-Permian Non-Aquatic Vertebrates in Central Europe. Freiberger Forschungshefte C 548 (22): 39–44.

    Google Scholar 

  • Wang, J., H.W. Pfefferkorn, Y. Zhang, and Z. Feng. 2012. Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. Proceedings of the National Academy of Sciences of the United States of America 109: 4927–4932.

    Google Scholar 

  • Watson, D.M.S. 1957. On Millerosaurus and the Early History of the Sauropsid Reptiles. Philosophical Transactions of the Royal Society B 240: 325–400.

    Google Scholar 

  • Werneburg, R. 1991. Die Branchiosaurier aus dem Unterrotliegend des Döhlener Beckens bei Dresden. Veröffentlichungen Naturhistorisches Museum Schleusingen 6: 75–99.

    Google Scholar 

  • Werneburg, R. 1993. Ein Schädelrest von Eoscopus lockardi Daly (Amphibia: Dissorophoidea) aus dem Oberkarbon von Kansas. Veröffentlichungen Naturhistorisches Museum Schleusingen 7 (8): 147–149.

    Google Scholar 

  • Werneburg, R. 1999. Ein Pelycosaurier aus dem Rotliegenden des Thüringer Waldes. Veröffentlichungen Naturhistorisches Museum Schleusingen 14: 55–58.

    Google Scholar 

  • Zani, P.A. 2000. The Comparative Evolution of Lizard Claw and Toe Morphology and Clinging Performance. Journal of Evolutionary Biology 13: 316–325.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support by the Chemnitz excavation team including Ralph Kretzschmar and Mathias Merbitz for professional fieldwork, saving of the finds and many fruitful discussions and Dr. Thorid Zierold for encouraging the project management. We express special thanks to Georg Sommer, Schleusingen, for excellent preparation of the skeletons. We are further indebted to Maibrit Scheibel, Annika Buitink and Thomas Israel. This research was supported by the Deutsche Forschungsgemeinschaft (DFG grants RO 1273-3/1 to R.R. and SCHN 408/20 to J.W.S.) and Volkswagen Foundation (Az: I/84638), as well as Raimund Albersdörfer and Michael Völker (Dinosaurier Freiluftmuseum Altmühltal). The manuscript benefited greatly from the constructive reviews provided by Sean P. Modesto and Neil Brocklehurst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Spindler.

Additional information

Handling Editor: Jörg Fröbisch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spindler, F., Werneburg, R., Schneider, J.W. et al. First arboreal 'pelycosaurs' (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny. PalZ 92, 315–364 (2018). https://doi.org/10.1007/s12542-018-0405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-018-0405-9

Keywords

Schlüsselwörter

Navigation