Skip to main content
Log in

Sustainable Processing of Insulating Yttria Stabilized Zirconia Ceramic Using Wire Electrical Discharge Machining in Distilled Water

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The insulating ceramic materials owning to their properties are being useful in modern industrial applications. The same desirable properties make the processing of ceramics difficult by the conventional techniques. The wire electrical discharge machining (WEDM) is well known for its three-dimensional intricate shape generation capability in hard materials. Applying the WEDM to process insulating ceramic materials require electrical conductivity to establish the initial electric contact. This can be provided by covering the insulating ceramic surface with electrically conductive assisting electrode (AE) material. The present study applies the AE technology to machine yttria-stabilized zirconia ceramic with graphite powder additive mixed distilled water. The study verifies the feasibility of applying WEDM to cut the insulating ceramic materials successfully. The secondary electroconductive layer generation on the insulating ceramic surface to maintain the electrical contact on exposure of ceramic is also supported by the composition analysis of the ceramic surface. With the replacement of the kerosene dielectric, this paper highlights the use of distilled water offering a sustainable approach. The sustainability index obtained for graphite additive mixed dielectric is 78.0 compared with 50.33 of EDM oil and 48.67 of kerosene dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data of this study can be available from the corresponding author on request.

References

  1. Liao, Y. S., Huang, J. T., & Chen, Y. H. (2004). A study to achieve a fine surface finish. Journal of Materials Processing Technology, 149, 165–171. https://doi.org/10.1016/j.jmatprotec.2003.10.034

    Article  Google Scholar 

  2. Tosum, N., Cogun, C., & Inan, A. (2003). The effect of cutting parameters on workpiece surface roughness in wire EDM. Machining Science and Technology, 7(2), 209–219. https://doi.org/10.1081/MST-120022778

    Article  Google Scholar 

  3. Liu, L., Thangaraj, M., Karmiris-Obratański, P., Zhou, Y., Annamalai, R., Machnik, R., Elsheikh, A., & Markopoulos, A. P. (2022). Optimization of wire EDM process parameters on cutting inconel 718 alloy with zinc-diffused coating brass wire electrode using Taguchi-DEAR technique. Coatings, 12(1612), 1–13. https://doi.org/10.3390/coatings12111612

    Article  Google Scholar 

  4. Vogeler, F., Lauwers, B., & Ferraris, E. (2016). Analysis of wire EDM finishing cuts on large scale ZrO2-TiN-hybrid spark plasma sintered blanks. Procedia CIRP, 42, 268–273. https://doi.org/10.1016/j.procir.2016.02.284

    Article  Google Scholar 

  5. Hou, P., Guo, Y., Shao, D., Li, Z., Wureli, Y., & Tang, L. (2014). Influence of open-circuit voltage on high-speed wire electrical discharge machining of insulating Zirconia. The International Journal of Advanced Manufacturing Technology, 73, 229–239. https://doi.org/10.1007/s00170-014-5767-x

    Article  Google Scholar 

  6. Tuersley, P., Jawaid, A., & Pashby, I. R. (1994). Review: Various methods of machining advanced ceramic materials. Journal of Materials Processing Technology, 42, 377–390. https://doi.org/10.1016/0924-0136(94)90144-9

    Article  Google Scholar 

  7. Shackelford, J. F., & Robert, H. D. (2008). Ceramic and glass materials, structure, properties and processing (pp. 56–62). Springer.

    Google Scholar 

  8. Mohri, N., Fukuzawa, Y., Tani, T., Saito, N., & Furutani, K. (1996). assisting electrode method for machining insulating ceramics. CIRP Annals, 45(1), 201–204. https://doi.org/10.1016/S0007-8506(07)63047-9

    Article  Google Scholar 

  9. Hosel, T., Muller, C., & Reinecke, H. (2011). Spark erosion structuring of electrically nonconductive zirconia. CIRP Journal of Manufacturing Science and Technology, 4, 357–361. https://doi.org/10.1016/j.cirpj.2011.05.005

    Article  Google Scholar 

  10. Tani, T., Fukuzawa, Y., Mohri, N., Saito, N., & Okada, M. (2004). Machining phenomena in WEDM of insulating ceramics. Journal of Materials Processing Technology, 149, 124–128. https://doi.org/10.1016/j.jmatprotec.2003.12.027

    Article  Google Scholar 

  11. Shinde, B., & Pawade, R. (2021). Study on analysis of kerf width variation in WEDM of insulating zirconia. Materials and Manufacturing Processes, 36(9), 1010–1018. https://doi.org/10.1080/10426914.2020.1854468

    Article  Google Scholar 

  12. Pawade, R., & Shinde, B. (2021). Study on analysis of plasma resistance variation in WEDM of insulating zirconia. Materials and Manufacturing Processes, 36(1), 59–72. https://doi.org/10.1080/10426914.2020.1813898

    Article  Google Scholar 

  13. Konig, W., Dauw, D. F., Levy, G., & Panten, U. (1988). EDM future steps towards the machining of ceramics. CIRP Annals, 37(2), 623–631. https://doi.org/10.1016/S0007-8506(07)60759-8

    Article  Google Scholar 

  14. Mohri, N., Fukuzawa, Y., Tani, T., & Saito, T. (2002). Some considerations to machining characteristics of insulating ceramics—Towards practical use in industry. CIRP Annals, 51(1), 161–164. https://doi.org/10.1016/S0007-8506(07)61490-5

    Article  Google Scholar 

  15. Muttamara, A., Fukuzawa, Y., Mohri, N., & Tani, T. (2003). Probability of precision micro machining of insulating Si3N4. Journal of Materials Processing Technology, 140, 243–247. https://doi.org/10.1016/S0924-0136(03)00745-3

    Article  Google Scholar 

  16. Guo, Y. F., Bai, J. C., Deng, G. Q., & Lu, Z. S. (2017). High speed wire electrical discharge machining (HS-WEDM) phenomena of insulating Si3N4 ceramics with assisting electrode. Key Engineering Materials, 339, 281–285. https://doi.org/10.4028/www.scientific.net/KEM.339.281

    Article  Google Scholar 

  17. Kucukturk, G., & Cogun, C. (2010). A new method for machining of electrically nonconductive workpieces using electric discharge machining technique. Machining Science and Technology, 14(2), 189–207. https://doi.org/10.1080/10910344.2010.500497

    Article  Google Scholar 

  18. Shinde, B. D., & Pawade, R. (2017). Experimental investigations in EDM of low electrical conductive 92.7% Al2O3 ceramic. International Journal of Engineering Science and Technology, 9(09S), 97–102.

    Google Scholar 

  19. Hosel, T., Muller, C., & Reinecke, H. (2012). Analysis of surface reaction mechanisms on electrically non-conductive zirconia, occurring within the spark erosion process chain. Key Engineering Materials, 504, 1171–1176. https://doi.org/10.4028/www.scientific.net/KEM.504-506.1171

    Article  Google Scholar 

  20. Guo, Y., Huo, P., Shao, D., Li, Z., Wang, L., & Tnang, L. (2014). High speed wire electrical discharge machining of insulating zirconia with a novel assisting electrode. Materials and Manufacturing Processes, 29(5), 526–531. https://doi.org/10.1080/10426914.2014.892983

    Article  Google Scholar 

  21. Ming, W., Jia, H., Zhang, H., Zhang, Z., Liu, K., Du, J., & Zhang, G. (2020). A comprehensive review of electric discharge machining of advanced ceramics. Ceramics International, 46(14), 21813–21838. https://doi.org/10.1016/j.ceramint.2020.05.207

    Article  Google Scholar 

  22. Bilal, A., Jahan, M. P., Talamona, D., & Perveen, A. (2019). Electro-discharge machining of ceramics: A review. Micromachines, 10(1), 1–41. https://doi.org/10.3390/mi10010010

    Article  Google Scholar 

  23. Volosova, M., Okunkova, A., Peretyagin, P., Melnik, Y. A., & Kapustina, N. (2019). On electrical discharge machining of non-conductive ceramics: A review. Technologies, 7(3), 1–16. https://doi.org/10.3390/technologies7030055

    Article  Google Scholar 

  24. Volosova, M. A., Okunkova, A. A., Fedorov, S. V., Hamdy, K., & Mikhailova, M. A. (2020). Electrical discharge machining non-conductive ceramics: Combination of materials. Technologies, 8(2), 1–28. https://doi.org/10.3390/technologies8020032

    Article  Google Scholar 

  25. Chen, S. T., & Huang, L. W. (2021). A micro-energy w-EDM power source based on high-frequency spark erosion for making diamond heat-sink arrays. International Journal of Precision Engineering and Manufacturing-Green Technology, 1–17.

  26. Xu, M., Li, C., Kurniawan, R., Chen, J., & Ko, T. J. (2022). Influence of different dielectrics and machining parameters for electrical discharge-assisted milling of titanium alloy. International Journal of Precision Engineering and Manufacturing, 23(10), 1095–1112.

    Article  Google Scholar 

  27. Ayabaca, C., & Vila, C. (2020). An approach to sustainable metrics definition and evaluation for green manufacturing in material removal processes. Materials, 13(2), 373. https://doi.org/10.3390/ma13020373

    Article  Google Scholar 

  28. Bastas, A. (2021). Sustainable manufacturing technologies: A systematic review of latest trends and themes. Sustainability, 13(8), 4271. https://doi.org/10.3390/su13084271

    Article  Google Scholar 

  29. Fratila, D. (2013). Sustainable manufacturing through environmentally-friendly machining. Green manufacturing processes and systems (pp. 1–21). Springer. https://doi.org/10.1007/978-3-642-33792-5_1

  30. Kopac, J. (2009). Achievements of sustainable manufacturing by machining. Journal of Achievements in Materials and Manufacturing Engineering, 34(2), 180–187.

    Google Scholar 

  31. Kadam, G. S., & Pawade, R. S. (2016). Sustainability modelling and assessment in highspeed turning of inconel 718. International Journal of Precision Technology, 6(3–4), 249–261. https://doi.org/10.1504/IJPTECH.2016.079996

    Article  Google Scholar 

  32. Kadam, G. S., & Pawade, R. S. (2017). Surface integrity and sustainability assessment in high-speed machining of Inconel 718—An eco-friendly green approach. Journal of Cleaner Production, 147(20), 273–283. https://doi.org/10.1016/j.jclepro.2017.01.104

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported through TEQIP-II project scheme by Govt. of India for procurement of the Wire EDM system used for experimentation.

Funding

This work was supported by the MHRD of India through TEQIP II programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babasaheb D. Shinde.

Ethics declarations

Conflict of interest

The Authors warrants that the article is the author’s original work that has not been published before. The authors declare that they have no competing interest pertaining to this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, B.D., Pawade, R.S. Sustainable Processing of Insulating Yttria Stabilized Zirconia Ceramic Using Wire Electrical Discharge Machining in Distilled Water. Int. J. Precis. Eng. Manuf. 25, 1139–1152 (2024). https://doi.org/10.1007/s12541-024-00973-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-024-00973-1

Keywords

Navigation