Skip to main content
Log in

Surface Assembly Strategy for the Fabrication of MoS2 Thin-Film Patterns

  • Short Communication
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) is a novel material with remarkable properties that is widely investigated for future applications in electronics, sensors, and smart materials. In this respect, a low cost, easy process, large-area mass production process is needed to obtain diverse structures and surface patterns of MoS2. Here, we demonstrate an effective MoS2 patterning process using substrate surface modification that can solve the difficulties encountered in previous studies. This technique utilizes the sulfur vacancies introduced during chemical exfoliation of MoS2 flakes. The MoS2 patterning is performed via surface modification with thiol molecules on the substrate in pre-designed shapes. The thiol (–SH) group required to bond MoS2 to the surface-modified substrate using (3-mercaptopropyl)trimethoxysilane was confirmed by FT-IR and the patterned MoS2 was confirmed by Raman shift. Through this process, a gas sensor was fabricated and its feasibility was confirmed to show its applicability to various applications MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Shekhirev, M., Vo, T. H., Mehdi-Pour, M., Lipatov, A., Munukutla, S., Lyding, J. W., et al. (2016). Interfacial self-assembly of atomically precise graphene nanoribbons into uniform thin films for electronics applications. ACS Applied Materials & Interfaces,9(1), 693–700.

    Article  Google Scholar 

  2. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology,7(11), 699.

    Article  Google Scholar 

  3. Park, C., Kim, J., & Ahn, H.-S. (2018). Wear and adhesion properties of single-layer graphene. International Journal of Precision Engineering and Manufacturing,19(10), 1539–1544.

    Article  Google Scholar 

  4. Kim, J.-S., Yoo, H.-W., Choi, H. O., & Jung, H.-T. (2014). Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Letters,14(10), 5941–5947.

    Article  Google Scholar 

  5. Lee, J., Ha, T.-J., Li, H., Parrish, K. N., Holt, M., Dodabalapur, A., et al. (2013). 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano,7(9), 7744–7750.

    Article  Google Scholar 

  6. Lee, S., Lee, K., Liu, C.-H., Kulkarni, G. S., & Zhong, Z. (2012). Flexible and transparent all-graphene circuits for quaternary digital modulations. Nature Communications,3, 1018.

    Article  Google Scholar 

  7. Street, R. A. (2009). Thin-film transistors. Advanced Materials,21(20), 2007–2022.

    Article  Google Scholar 

  8. Samnakay, R., Jiang, C., Rumyantsev, S., Shur, M., & Balandin, A. A. (2015). Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices. Applied Physics Letters,106(2), 023115.

    Article  Google Scholar 

  9. Wei, X., Wang, Y., Shen, Y., Xie, G., Xiao, H., Zhong, J., et al. (2014). Phonon thermal conductivity of monolayer MoS2: A comparison with single layer graphene. Applied Physics Letters,105(10), 103902.

    Article  Google Scholar 

  10. Bertolazzi, S., Krasnozhon, D., & Kis, A. (2013). Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano,7(4), 3246–3252.

    Article  Google Scholar 

  11. Chang, K., & Chen, W. (2011). L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano,5(6), 4720–4728.

    Article  Google Scholar 

  12. Fan, X., Khosravi, F., Rahneshin, V., Shanmugam, M., Loeian, M., Jasinski, J., et al. (2015). MoS2 actuators: Reversible mechanical responses of MoS2-polymer nanocomposites to photons. Nanotechnology,26(26), 261001.

    Article  Google Scholar 

  13. Lukowski, M. A., Daniel, A. S., Meng, F., Forticaux, A., Li, L., & Jin, S. (2013). Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. Journal of the American Chemical Society,135(28), 10274–10277.

    Article  Google Scholar 

  14. Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters,105(13), 136805.

    Article  Google Scholar 

  15. Marques, M. E., Mansur, A. A., & Mansur, H. S. (2013). Chemical functionalization of surfaces for building three-dimensional engineered biosensors. Applied Surface Science,275, 347–360.

    Article  Google Scholar 

  16. Perkins, F. K., Friedman, A. L., Cobas, E., Campbell, P., Jernigan, G., & Jonker, B. T. (2013). Chemical vapor sensing with monolayer MoS2. Nano Letters,13(2), 668–673.

    Article  Google Scholar 

  17. He, K., Poole, C., Mak, K. F., & Shan, J. J. N. (2013). Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Letters,13(6), 2931–2936.

    Article  Google Scholar 

  18. Pu, J., Yomogida, Y., Liu, K.-K., Li, L.-J., Iwasa, Y., & Takenobu, T. J. N. (2012). Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Letters,12(8), 4013–4017.

    Article  Google Scholar 

  19. Kang, D. H., Kim, M. S., Shim, J., Jeon, J., Park, H. Y., Jung, W. S., et al. (2015). High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Advanced Functional Materials,25(27), 4219–4227.

    Article  Google Scholar 

  20. Lee, S. K., Lee, J. B., Singh, J., Rana, K., & Ahn, J. H. J. A. M. (2015). Drying-mediated self-assembled growth of transition metal dichalcogenide wires and their heterostructures. Advanced Materials,27(28), 4142–4149.

    Article  Google Scholar 

  21. Lee, Y. H., Zhang, X. Q., Zhang, W., Chang, M. T., Lin, C. T., Chang, K. D., et al. (2012). Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials,24(17), 2320–2325.

    Article  Google Scholar 

  22. Yun, T., Kim, J.-S., Shim, J., Choi, D. S., Lee, K. E., Koo, S. H., et al. (2016). Ultrafast interfacial self-assembly of 2D transition metal dichalcogenides monolayer films and their vertical and in-plane heterostructures. ACS Applied Materials & Interfaces,9(1), 1021–1028.

    Article  Google Scholar 

  23. Zhao, J., Yu, H., Chen, W., Yang, R., Zhu, J., Liao, M., et al. (2016). Patterned peeling 2D MoS2 off the substrate. ACS Applied Materials & Interfaces,8(26), 16546–16550.

    Article  Google Scholar 

  24. Lim, Y. R., Han, J. K., Kim, S. K., Lee, Y. B., Yoon, Y., Kim, S. J., et al. (2018). Roll-to-roll production of layer-controlled molybdenum disulfide: A platform for 2D semiconductor-based industrial applications. Advanced Materials,30(5), 1705270.

    Article  Google Scholar 

  25. Hong, J., Hu, Z., Probert, M., Li, K., Lv, D., Yang, X., et al. (2015). Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications,6, 6293.

    Article  Google Scholar 

  26. Joensen, P., Frindt, R., & Morrison, S. R. J. M. (1986). Single-layer MoS2. Materials Research Bulletin,21(4), 457–461.

    Article  Google Scholar 

  27. Gothe, P. K., Gaur, D., & Achanta, V. G. (2018). MPTMS self-assembled monolayer deposition for ultra-thin gold films for plasmonics. Journal of Physics Communications,2(3), 035005.

    Article  Google Scholar 

  28. Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., & Ryu, S. J. A. (2010). Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano,4(5), 2695–2700.

    Article  Google Scholar 

  29. Lee, K., Kim, H. Y., Lotya, M., Coleman, J. N., Kim, G. T., & Duesberg, G. S. J. A. (2011). Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Advanced Materials,23(36), 4178–4182.

    Article  Google Scholar 

  30. Nirmalraj, P. N., Lutz, T., Kumar, S., Duesberg, G. S., & Boland, J. J. J. N. (2010). Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Letters,11(1), 16–22.

    Article  Google Scholar 

  31. Kumar, S., Murthy, J., & Alam, M. J. P. (2005). Percolating conduction in finite nanotube networks. Physical Review Letters,95(6), 066802.

    Article  Google Scholar 

  32. Lee, B. Y., Sung, M. G., Lee, J., Baik, K. Y., Kwon, Y.-K., Lee, M.-S., et al. (2011). “Universal parameters for carbon nanotube network-based sensors: Can nanotube sensors be reproducible? ACS Nano,5(6), 4373–4379.

    Article  Google Scholar 

  33. Das, S., Chen, H.-Y., Penumatcha, A. V., & Appenzeller, J. J. N. (2012). High performance multilayer MoS2 transistors with scandium contacts. Nano Letters,13(1), 100–105.

    Article  Google Scholar 

  34. Suematsu, K., Shin, Y., Hua, Z., Yoshida, K., Yuasa, M., Kida, T., et al. (2014). Nanoparticle cluster gas sensor: Controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Applied Materials & Interfaces,6(7), 5319–5326.

    Article  Google Scholar 

  35. Wang, L., Deng, J., Lou, Z., Zhang, T. J. S., & Chemical, A. B. (2014). Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: One-pot synthesis and toluene-sensing properties. Sensors and Actuators B: Chemical,201, 1–6.

    Article  Google Scholar 

  36. Gao, P.-X., Liu, J., Buchine, B. A., Weintraub, B., Wang, Z., & Lee, J. J. A. P. L. (2007). Bridged ZnO nanowires across trenched electrodes. Applied Physics Letters,91(14), 142108.

    Article  Google Scholar 

  37. Ko, S. H., Park, I., Pan, H., Misra, N., Rogers, M. S., Grigoropoulos, C. P., et al. (2008). ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process. Applied Physics Letters,92(15), 154102.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Research Foundation (NRF) (2016M3A7B4909581, 2018R1A2B2006640) and the Global Frontier Project from the Center for Intergrated Smart Sensors(CISS-2011-0031866), funded by the Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Yang Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, G., Kim, H.S. & Lee, B.Y. Surface Assembly Strategy for the Fabrication of MoS2 Thin-Film Patterns. Int. J. Precis. Eng. Manuf. 20, 2215–2220 (2019). https://doi.org/10.1007/s12541-019-00207-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00207-9

Keywords

Navigation