Skip to main content
Log in

Analysis of Flow and Wall Deformation in a Stenotic Flexible Channel Containing a Soft Core, Simulating Atherosclerotic Arteries

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A novel eccentric stenotic channel was manufactured to provide an in vivo physical environment simulating an atherosclerotic artery. It was composed of an elastic wall containing a soft semi-cylindrical volume that simulated a lipid core. Wall strain and fluid shear stress distributions were computed using a finite element method incorporating fluid structure interaction. The particle image velocity measurement method was extended to measure wall deformation and wall deformation and flow velocity were simultaneously measured to validate the computational method. The maximum deformation was found to occur in the distal shoulder, while the maximum flow wall shear stress was skewed to the proximal shoulder of the lipid core. Measured maximum wall deformations and flow velocities agreed with the computational results within a 10% margin of error. The wall shear stress on the stenotic wall varied from 0 to 1.2 Pa. The maximum shear strain in the longitudinal plane and the normal strain in the transverse plane for the Core 1 model (Young’s modulus 50 kPa) were 3.8% and 0.7%, respectively. The maximum shear and normal wall strains for the Core 2 model (Young’s modulus 200 kPa) were 34% and 14% lower. These wall stress and strain values corresponded with those found in human atherosclerotic arteries. The developed channel could provide spatial and temporal variations as well as magnitudes of wall shear stress and strain observed in atherosclerotic arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Davies, P. F. (1995). Flow-mediated endothelial mechanotransduction. Physiological Reviews, 75(3), 519–560.

    Article  Google Scholar 

  2. Dhawan, S. S., Avati Nanjundappa, R. P., Branch, J. R., Taylor, W. R., Quyyumi, A. A., Jo, H., et al. (2010). Shear stress and plaque development. Expert Review of Cardiovascular Therapy, 8(4), 545–556.

    Article  Google Scholar 

  3. Koskinas, K. C., Chatzizisis, Y. S., Baker, A. B., Edelman, E. R., Stone, P. H., & Feldman, C. L. (2009). The role of low endothelial shear stress in the conversion of atherosclerotic lesions from stable to unstable plaque. Current Opinion in Cardiology, 24(6), 580–590.

    Article  Google Scholar 

  4. Giddens, D. P., Zarins, C. K., & Glagov, S. (1993). The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of Biomechanical Engineering, 115(4B), 588–594.

    Article  Google Scholar 

  5. Glagov, S., Bassiouny, H. S., Giddens, D. P., & Zarins, C. K. (1995). Pathobiology of plaque modeling and complication. Surgical Clinics of North America, 75(4), 545–556.

    Article  Google Scholar 

  6. Dai, G., Kaazempur-Mofrad, M. R., Natarajan, S., Zhang, Y., Vaughn, S., Blackman, B. R., et al. (2004). Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and-resistant regions of human vasculature. Proceedings of the National Academy of Sciences, 101(41), 14871–14876.

    Article  Google Scholar 

  7. Slager, C. J., Wentzel, J. J., Gijsen, F. J. H., Schuurbiers, J. C. H., Van der Wal, A. C., Van der Steen, A. F. W., et al. (2005). The role of shear stress in the generation of rupture-prone vulnerable plaques. Nature Reviews Cardiology, 2(8), 401–407.

    Google Scholar 

  8. Mattsson, E. J., Kohler, T. R., Vergel, S. M., & Clowes, A. W. (1997). Increased blood flow induces regression of intimal hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 17(10), 2245–2249.

    Article  Google Scholar 

  9. Birukov, K. G., Bardy, N., Lehoux, S., Merval, R., Shirinsky, V. P., & Tedgui, A. (1998). Intraluminal pressure is essential for the maintenance of smooth muscle caldesmon and filamin content in aortic organ culture. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(6), 922–927.

    Article  Google Scholar 

  10. Chapman, G. B., Durante, W., Hellums, J. D., & Schafer, A. I. (2000). Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. American Journal of Physiology-Heart and Circulatory Physiology, 278(3), H748–H754.

    Article  Google Scholar 

  11. Wallace, C. S., Champion, J. C., & Truskey, G. A. (2007). Adhesion and function of human endothelial cells co-cultured on smooth muscle cells. Annals of Biomedical Engineering, 35(3), 375–386.

    Article  Google Scholar 

  12. McWhorter, F. Y., Davis, C. T., & Liu, W. F. (2015). Physical and mechanical regulation of macrophage phenotype and function. Cellular and Molecular Life Sciences, 72(7), 1303–1316.

    Article  Google Scholar 

  13. Ballotta, V., Driessen-Mol, A., Bouten, C. V., & Baaijens, F. P. (2014). Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials, 35(18), 4919–4928.

    Article  Google Scholar 

  14. Kim, K., Han, D. Y., Chang, K., & Lee, W. G. (2018). Design and manufacturing of a uniform, massively parallel fluid distributor for automated cell culture bioreactor. International Journal of Precision Engineering and Manufacturing, 19(3), 417–424.

    Article  Google Scholar 

  15. Hwang, J., Cho, Y. H., Park, M. S., & Kim, B. H. (2019). Microchannel fabrication on glass materials for microfluidic devices. International Journal of Precision Engineering and Manufacturing, 20(3), 479–495.

    Article  Google Scholar 

  16. Ruel, J., Lemay, J., Dumas, G., Doillon, C., & Charara, J. (1995). Development of a parallel plate flow chamber for studying cell behavior under pulsatile flow. ASAIO Journal, 41(4), 876–883.

    Article  Google Scholar 

  17. Bacabac, R. G., Smit, T. H., Cowin, S. C., Van Loon, J. J., Nieuwstadt, F. T., Heethaar, R., et al. (2005). Dynamic shear stress in parallel-plate flow chambers. Journal of Biomechanics, 38(1), 159–167.

    Article  Google Scholar 

  18. Chappell, D. C., Varner, S. E., Nerem, R. M., Medford, R. M., & Alexander, R. W. (1998). Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circulation Research, 82(5), 532–539.

    Article  Google Scholar 

  19. Brown, T. D. (2000). Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics, 33(1), 3–14.

    Article  Google Scholar 

  20. Chau, L., Doran, M., & Cooper-White, J. (2009). A novel multishear microdevice for studying cell mechanics. Lab on a Chip, 9(13), 1897–1902.

    Article  Google Scholar 

  21. Heo, K. S., Fujiwara, K., & Abe, J. I. (2014). Shear stress and atherosclerosis. Molecules and Cells, 37(6), 435–440.

    Article  Google Scholar 

  22. Redmond, E. M., Cahill, P. A., & Sitzmann, J. V. (1995). Perfused transcapillary smooth muscle and endothelial cell co-culture—A novelin vitro model. Vitro Cellular & Developmental Biology-Animal, 31(8), 601–609.

    Article  Google Scholar 

  23. Matsumoto, T., Yung, Y. C., Fischbach, C., Kong, H. J., Nakaoka, R., & Mooney, D. J. (2007). Mechanical strain regulates endothelial cell patterning in vitro. Tissue Engineering, 13(1), 207–217.

    Article  Google Scholar 

  24. Gerstmair, A., Fois, G., Innerbichler, S., Dietl, P., & Felder, E. (2009). A device for simultaneous live cell imaging during uni-axial mechanical strain or compression. Journal of Applied Physiology, 107, 613–620.

    Article  Google Scholar 

  25. Lee, J., Wong, M., Smith, Q., & Baker, A. B. (2013). A novel system for studying mechanical strain waveform-dependent responses in vascular smooth muscle cells. Lab on a Chip, 13(23), 4573–4582.

    Article  Google Scholar 

  26. Berardi, D. E., & Tarbell, J. M. (2009). Stretch and shear interactions affect intercellular junction protein expression and turnover in endothelial cells. Cellular and Molecular Bioengineering, 2(3), 320–331.

    Article  Google Scholar 

  27. Punchard, M. A., O’Cearbhaill, E. D., Mackle, J. N., McHugh, P. E., Smith, T. J., Stenson-Cox, C., et al. (2009). Evaluation of human endothelial cells post stent deployment in a cardiovascular simulator in vitro. Annals of Biomedical Engineering, 37(7), 1322–1330.

    Article  Google Scholar 

  28. Estrada, R., Giridharan, G. A., Nguyen, M. D., Prabhu, S. D., & Sethu, P. (2011). Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions. Biomicrofluidics, 5(3), 032006.

    Article  Google Scholar 

  29. Keane, R. D., & Adrian, R. J. (1992). Theory of cross-correlation analysis of PIV images. Applied Scientific Research, 49(3), 191–215.

    Article  Google Scholar 

  30. Sadek, S., Iskander, M. G., & Liu, J. (2003). Accuracy of digital image correlation for measuring deformations in transparent media. Journal of Computing in Civil Engineering, 17(2), 88–96.

    Article  Google Scholar 

  31. Sabass, B., Gardel, M. L., Waterman, C. M., & Schwarz, U. S. (2008). High resolution traction force microscopy based on experimental and computational advances. Biophysical Journal, 94(1), 207–220.

    Article  Google Scholar 

  32. Ng, S. S., Li, C., & Chan, V. (2011). Experimental and numerical determination of cellular traction force on polymeric hydrogels. Interface focus, 1(5), 777–791.

    Article  Google Scholar 

  33. Kang, M. J., & Rhee, K. (2017). Computation of stress field in a polymer scaffold from optically measured deformation field using particle images. International Journal of Precision Engineering and Manufacturing, 18(7), 1021–1026.

    Article  Google Scholar 

  34. Charonko, J., Karri, S., Schmieg, J., Prabhu, S., & Vlachos, P. (2009). In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Annals of Biomedical Engineering, 37(7), 1310–1321.

    Article  Google Scholar 

  35. Wang, Z., Volinsky, A. A., & Gallant, N. D. (2014). Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. Journal of Applied Polymer Science, 131(22), 41050.

    Article  Google Scholar 

  36. Gijsen, F., van der Giessen, A., van der Steen, A., & Wentzel, J. (2013). Shear stress and advanced atherosclerosis in human coronary arteries. Journal of Biomechanics, 46(2), 240–247.

    Article  Google Scholar 

  37. Li, Y. S. J., Haga, J. H., & Chien, S. (2005). Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of Biomechanics, 38(10), 1949–1971.

    Article  Google Scholar 

  38. Polacheck, W. J., Li, R., Uzel, S. G., & Kamm, R. D. (2013). Microfluidic platforms for mechanobiology. Lab on a Chip, 13(12), 2252–2267.

    Article  Google Scholar 

  39. Maurice, R. L., Fromageau, J., Brusseau, É., Finet, G., Rioufol, G., & Cloutier, G. (2007). On the potential of the lagrangian estimator for endovascular ultrasound elastography: In vivo human coronary artery study. Ultrasound in Medicine and Biology, 33(8), 1199–1205.

    Article  Google Scholar 

  40. Lee, R. T., Schoen, F. J., Loree, H. M., Lark, M. W., & Libby, P. (1996). Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis: implications for plaque rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 16(8), 1070–1073.

    Article  Google Scholar 

  41. Chung, S., Sudo, R., Mack, P. J., Wan, C. R., Vickerman, V., & Kamm, R. D. (2009). Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab on a Chip, 9(2), 269–275.

    Article  Google Scholar 

  42. Zheng, Y., Chen, J., Craven, M., Choi, N. W., Totorica, S., Diaz-Santana, A., et al. (2012). In vitro microvessels for the study of angiogenesis and thrombosis. Proceedings of the National Academy of Sciences, 109(24), 9342–9347.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund (NRF-2017R1A2B4004439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyehan Rhee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M.H., Chhai, P. & Rhee, K. Analysis of Flow and Wall Deformation in a Stenotic Flexible Channel Containing a Soft Core, Simulating Atherosclerotic Arteries. Int. J. Precis. Eng. Manuf. 20, 1047–1056 (2019). https://doi.org/10.1007/s12541-019-00122-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00122-z

Keywords

Navigation