Skip to main content
Log in

Fabrication of bioinspired dry adhesives by CNC machining and replica molding

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Bioinspired dry adhesives have attracted considerable attention over the last decade because of their superiority in properties, such as adhesion strength, repeatable and reversible adhesion, rough surface adaptation, self-cleaning, and directional adhesion. However, previous manufacturing techniques of bioinspired dry adhesives based on lithographic approaches, such as photolithography or ebeam lithography, require high-cost, sophisticated, and non-environmental friendly processes and materials. These requirements significantly limit the scalable production and commercialization of bioinspired dry adhesives. In this paper, we present a new manufacturing technique based on automated CNC machining and replica molding. This method enables simple and scalable fabrication of bioinspired dry adhesives. Our suggested manufacturing process will facilitate the widespread use and commercialization of biomimetic smart dry adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR:

aspect ratio

CNTs:

carbon nanotubes

CNC:

computer numerical control

PDMS:

polydimethylsiloxane

Si:

silicon

References

  1. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., et al., “Adhesive force of a Single Gecko Foot-Hair,” Nature, Vol. 405, No. 6787, pp. 681–685, 2000.

    Article  Google Scholar 

  2. Federle, W., “Why Are So Many Adhesive Pads Hairy?” Journal of Experimental Biology, Vol. 209, No. 14, pp. 2611–2621, 2006.

  3. Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., et al., “Evidence for Van Der Waals Adhesion in Gecko Setae,” Proceedings of the National Academy of Sciences, Vol. 99, No. 19, pp. 12252–12256, 2002.

    Article  Google Scholar 

  4. Guo, D.-J., Liu, R., Cheng, Y., Zhang, H., Zhou, L.-M., et al., “Reverse Adhesion of a Gecko-Inspired Synthetic Adhesive Switched by an Ion-Exchange Polymer-Metal Composite Actuator,” ACS Applied Materials & Interfaces, Vol. 7, No. 9, pp. 5480–5487, 2015.

    Article  Google Scholar 

  5. Krahn, J., Bovero, E., and Menon, C., “Magnetic Field Switchable Dry Adhesives,” ACS Applied Materials & Interfaces, Vol. 7, No. 4, pp. 2214–2222, 2015.

    Article  Google Scholar 

  6. Yi, H., Kang, M., Kwak, M. K., and Jeong, H. E., “Simple and Reliable Fabrication of Bioinspired Mushroom-Shaped Micropillars with Precisely Controlled Tip Geometries,” ACS Applied Materials & Interfaces, Vol. 8, No. 34, pp. 22671–22678, 2016.

    Article  Google Scholar 

  7. Im, H. S., Kwon, K. Y., Kim, J. U., Kim, K. S., Yi, H., et al., “Highly Durable and Unidirectionally Stooped Polymeric Nanohairs for Gecko-Like Dry Adhesive,” Nanotechnology, Vol. 26, No. 41, Paper No. 415301, 2015.

    Article  Google Scholar 

  8. Arzt, E., Gorb, S., and Spolenak, R., “From Micro to Nano Contacts in Biological Attachment Devices,” Proceedings of the National Academy of Sciences, Vol. 100, No. 19, pp. 10603–10606, 2003.

    Article  Google Scholar 

  9. Gorb, S., Varenberg, M., Peressadko, A., and Tuma, J., “Biomimetic Mushroom-Shaped Fibrillar Adhesive Microstructure,” Journal of the Royal Society Interface, Vol. 4, No. 13, pp. 271–275, 2007.

    Article  Google Scholar 

  10. Gorb, S. N. and Varenberg, M., “Mushroom-Shaped Geometry of Contact Elements in Biological Adhesive Systems,” Journal of Adhesion Science and Technology, Vol. 21, Nos. 12-13, pp. 1175–1183, 2007.

    Article  Google Scholar 

  11. Chen, B., Zhong, G., Goldberg Oppenheimer, P., Zhang, C., Tornatzky, H., et al., “Influence of Packing Density and Surface Roughness of Vertically-Aligned Carbon Nanotubes on Adhesive Properties of Gecko-Inspired Mimetics,” ACS Applied Materials & Interfaces, Vol. 7, No. 6, pp. 3626–3632, 2015.

    Google Scholar 

  12. del Campo, A., Greiner, C., Álvarez, I., and Arzt, E., “Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices,” Advanced Materials, Vol. 19, No. 15, pp. 1973–1977, 2007.

    Article  Google Scholar 

  13. Kim, J. H., Kang, S. M., Lee, B. J., Ko, H., Bae, W.-G., et al., “Remote Manipulation of Droplets on a Flexible Magnetically Responsive Film,” Scientific Reports, Vol. 5, 2015. (DOI: 10.1038/srep17843)

  14. Ko, H., Yi, H., and Jeong, H. E., “Wall and Ceiling Climbing Quadruped Robot with Superior Water Repellency Manufactured Using 3D Printing (UNIclimb),” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 4, No. 3, pp. 273–280, 2017.

    Article  Google Scholar 

  15. Kwak, R., Park, H.-H., Ko, H., Seong, M., Kwak, M. K., and Jeong, H. E., “Partially Cured Photopolymer with Gradient Bingham Plastic Behaviors as a Versatile Deformable Material,” ACS Macro Letters, Vol. 6, No. 5, pp. 561–565, 2017.

    Article  Google Scholar 

  16. Ngo, C.-V., Davaasuren, G., Oh, H.-S., and Chun, D.-M., “Transparency and Superhydrophobicity of Cone-Shaped Micropillar Array Textured Polydimethylsiloxane,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1347–1353, 2015.

    Article  Google Scholar 

  17. Seong, M., Jeong, C., Yi, H., Park, H.-H., Bae, W.-G., et al., “Adhesion of Bioinspired Nanocomposite Microstructure at High Temperatures,” Applied Surface Science, Vol. 413, pp. 275–283, 2017.

    Article  Google Scholar 

  18. Jeong, H. E., Lee, J.-K., Kim, H. N., Moon, S. H., and Suh, K. Y., “A Nontransferring Dry Adhesive with Hierarchical Polymer Nanohairs,” Proceedings of the National Academy of Sciences, Vol. 106, No. 14, pp. 5639–5644, 2009.

    Article  Google Scholar 

  19. Jeong, H. E., Lee, J.-K., Kwak, M. K., Moon, S. H., and Suh, K. Y., “Effect of Leaning Angle of Gecko-Inspired Slanted Polymer Nanohairs on Dry Adhesion,” Applied Physics Letters, Vol. 96, No. 4, Paper No. 043704, 2010.

    Article  Google Scholar 

  20. Yi, H., Hwang, I., Lee, J. H., Lee, D., Lim, H., et al., “Continuous and Scalable Fabrication of Bioinspired Dry Adhesives via a Rollto-Roll Process with Modulated Ultraviolet-Curable Resin,” ACS Applied Materials & Interfaces, Vol. 6, No. 16, pp. 14590–14599, 2014.

    Article  Google Scholar 

  21. Jeong, H. E., Lee, S. H., Kim, P., and Suh, K. Y., “Stretched Polymer Nanohairs by Nanodrawing,” Nano Letters, Vol. 6, No. 7, pp. 1508–1513, 2006.

    Article  Google Scholar 

  22. Jeong, H. E. and Suh, K. Y., “Nanohairs and Nanotubes: Efficient Structural Elements for Gecko-Inspired Artificial Dry Adhesives,” Nano Today, Vol. 4, No. 4, pp. 335–346, 2009.

    Article  Google Scholar 

  23. Kim, T. I., Jeong, H. E., Suh, K. Y., and Lee, H. H., “Stooped Nanohairs: Geometry-Controllable, Unidirectional, Reversible, and Robust Gecko-Like Dry Adhesive,” Advanced Materials, Vol. 21, No. 22, pp. 2276–2281, 2009.

    Article  Google Scholar 

  24. Sethi, S., Ge, L., Ci, L., Ajayan, P. M., and Dhinojwala, A., “Gecko-Inspired Carbon Nanotube-Based Self-Cleaning Adhesives,” Nano Letters, Vol. 8, No. 3, pp. 822–825, 2008.

    Article  Google Scholar 

  25. Yi, H., Hwang, I., Sung, M., Lee, D., Kim, J.-H., et al., “Bio-Inspired Adhesive Systems for Next-Generation Green Manufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 347–351, 2014.

    Article  Google Scholar 

  26. Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., et al., “Hybrid Manufacturing in Micro/Nano Scale: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 75–92, 2014.

    Article  Google Scholar 

  27. Jahan, M., Wong, Y., and Rahman, M., “A Study on the Quality Micro-Hole Machining of Tungsten Carbide by Micro-EDM Process Using Transistor and RC-Type Pulse Generator,” Journal of Materials Processing Technology, Vol. 209, No. 4, pp. 1706–1716, 2009.

    Article  Google Scholar 

  28. Nouraei, H., Kowsari, K., Spelt, J., and Papini, M., “Surface Evolution Models for Abrasive Slurry Jet Micro-Machining of Channels and Holes in Glass,” Wear, Vol. 309, No. 1, pp. 65–73, 2014.

    Article  Google Scholar 

  29. Sen, M. and Shan, H. S., “A Review of Electrochemical Macro-to Micro-Hole Drilling Processes,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 2, pp. 137–152, 2005.

    Article  MathSciNet  Google Scholar 

  30. Yan, Y., Hu, Z., Zhao, X., Sun, T., Dong, S., and Li, X., “Top-Down Nanomechanical Machining of Three-Dimensional Nanostructures by Atomic Force Microscopy,” Small, Vol. 6, No. 6, pp. 724–728, 2010.

    Article  Google Scholar 

  31. Zhang, Q., Zhang, F., Medarametla, S. P., Li, H., Zhou, C., and Lin, D., “3D Printing of Graphene Aerogels,” Small, Vol. 12, No. 13, pp. 1702–1708, 2016.

    Article  Google Scholar 

  32. Cho, M. H. and Park, S., “Micro CNC Surface Texturing on Polyoxymethylene (POM) and Its Tribological Performance in Lubricated Sliding,” Tribology International, Vol. 44, No. 7, pp. 859–867, 2011.

    Article  Google Scholar 

  33. Yan, Y., Sun, T., Liang, Y., and Dong, S., “Investigation on AFMBased Micro/Nano-CNC Machining System,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 11, pp. 1651–1659, 2007.

    Article  Google Scholar 

  34. Do, V.-C., Nguyen, D.-T., Cho, J.-H., and Kim, Y.-S., “Incremental Forming of 3D Structured Aluminum Sheet,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 2, pp. 217–223, 2016.

    Article  Google Scholar 

  35. Fan, W., Lee, C.-H., and Chen, J.-H., “Real-Time Repairable Interpolation Scheme for CNC Tool Path Processing,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 12, pp. 1673–1684, 2016.

    Article  Google Scholar 

  36. Kim, T., “Simulated Annealing Approach with an Exhaustive Greedy Search for the Optimal Machining Region Decomposition in CNC Roughing Tool Path Generation,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 399–402, 2015.

    Article  Google Scholar 

  37. Torres, F. and Griffin, J., “Control with Micro Precision in Abrasive Machining through the Use of Acoustic Emission Signals,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 3, pp. 441–449, 2015.

    Article  Google Scholar 

  38. Bae, W.-G., Kim, D., and Suh, K.-Y., “Instantly Switchable Adhesion of Bridged Fibrillar Adhesive via Gecko-Inspired Detachment Mechanism and Its Application to a Transportation System,” Nanoscale, Vol. 5, No. 23, pp. 11876–11884, 2013.

    Article  Google Scholar 

  39. Boesel, L. F., Greiner, C., Arzt, E., and Del Campo, A., “Gecko-Inspired Surfaces: A Path to Strong and Reversible Dry Adhesives,” Advanced Materials, Vol. 22, No. 19, pp. 2125–2137, 2010.

    Article  Google Scholar 

  40. Lee, J., Fearing, R. S., and Komvopoulos, K., “Directional Adhesion of Gecko-Inspired Angled Microfiber Arrays,” Applied Physics Letters, Vol. 93, No. 19, Paper No. 191910, 2008.

    Article  Google Scholar 

  41. Koschwanez, J. H., Carlson, R. H., and Meldrum, D. R., “Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent,” PLoS One, Vol. 4, No. 2, Paper No. e4572, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junho Choi or Hoon Eui Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, I., Yi, H., Choi, J. et al. Fabrication of bioinspired dry adhesives by CNC machining and replica molding. Int. J. Precis. Eng. Manuf. 18, 1239–1244 (2017). https://doi.org/10.1007/s12541-017-0145-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-017-0145-x

Keywords

Navigation