Skip to main content
Log in

Efficient workpiece clamping by indenting cone-shaped elements

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Machining fixtures which utilize screw-or strap clamps are widely used in manufacturing. Typical for them is that the cutting forces are balanced by the friction forces which act on the contact surfaces (interfaces) between clamping elements (screw- or strap clamps) and workpiece. This paper analyses load capacity and compliance of these interfaces. In order to increase their load capacity and reduce compliance, a method is proposed which is based on indenting sharp cone-shaped clamping elements into workpiece material using appropriate surfaces which are not machined, and are not expected to satisfy any particular aesthetic demands (most often castings and forgings). The results of numerical simulations and experimental investigation reveal substantial advantages of the proposed clamping method, offering possibility for industrial application and further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chun, S. H. and Ko, T. J., “Study on the response surface model of machining error in internal lathe boring,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 177–182, 2011.

    Article  Google Scholar 

  2. Vukelic, D., Zuperl, U., and Hodolic, J., “Complex system for fixture selection, modification, and design,” Int. J. Adv. Manuf. Technol., Vol. 45, No. 7, pp. 731–748, 2009.

    Article  Google Scholar 

  3. Munawar, M., Chen, J., and Mufti, N., “Investigation of cutting parameters effect for minimization of sur face roughness in internal turning,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 1, pp. 121–127, 2011.

    Article  Google Scholar 

  4. Vukelic, D., Ostojic, G., Stankovski, S., Lazarevic, M., Tadic, B., Hodolic, J., and Simeunovic, N., “Machining fixture assembly/disassembly in RFID environment,” Assem. Autom., Vol. 31, No. 1, pp. 62–68, 2011.

    Article  Google Scholar 

  5. Bi, Z. M. and Zhang, W. J., “Flexible fixture design and automation: Review, issues and future directions,” Int. J. Prod. Res., Vol. 39, No. 13, pp. 2867–2894, 2001.

    Article  Google Scholar 

  6. Wan, X. J., Hua, L., Wang, X. F., Peng, Q. Z., and Qin, X. P., “An error control approach to tool path adjustment conforming to the deformation of thin-walled workpiece,” Int. J. Mach. Tools Manuf., Vol. 51, No. 3, pp. 221–229, 2011.

    Article  Google Scholar 

  7. Amaral, N., Rencis, J. J., and Rong, Y., “Development of a finite element analysis tool for fixture design integrity verification and optimisation,” Int. J. Adv. Manuf. Technol., Vol. 25, No. 5, pp. 409–419, 2005.

    Article  Google Scholar 

  8. Asante, J. N., “A combined contact elasticity and finite elementbased model for contact load and pressure distribution calculation in a frictional workpiece-fixture system,” Int. J. Adv. Manuf. Technol., Vol. 39, No. 5–6, pp. 578–588, 2008.

    Article  Google Scholar 

  9. Chen, W., Ni, L., and Xue, J., “Deformation control through fixture layout design and clamping force optimization,” Int. J. Adv. Manuf. Technol., Vol. 38, No. 9, pp. 860–867, 2008.

    Article  Google Scholar 

  10. De Meter, E. C., Xie, W., Choudhuri, S., Vallapuzha, S., and Trethewey, M. W., “A model to predict minimum required clamp pre-loads in light of fixture-workpiece compliance,” Int. J. Mach. Tools Manuf., Vol. 41, No. 7, pp. 1031–1054, 2001.

    Article  Google Scholar 

  11. Hamedi, M., “Intelligent fixture design through a hybrid system of artificial neural network and genetic algorithm,” Artif. Intell. Rev., Vol. 23, No. 3, pp. 295–311, 2005.

    Article  Google Scholar 

  12. Hockenberger, M. J. and DeMeter, E. C., “The application of meta functions to the quasi-static analysis of workpiece displacement within a machining fixture,” J. Manuf. Sci. Eng.-Trans. ASME., Vol. 118, No. 3, pp. 325–331, 1996.

    Article  Google Scholar 

  13. Huang, Y. and Wang, L., “Realizing high accuracy machining by applying optimal clamping forces,” Int. J. Comput. Appl. Technol., Vol. 19, No. 2, pp. 107–118, 2004.

    Article  Google Scholar 

  14. Kashyap, S. and DeVries, W. R., “Finite element analysis and optimization in fixture design,” Struct. Optim., Vol. 18, No. 2–3, pp. 193–201, 1999.

    Google Scholar 

  15. Kaya, N., “Machining fixture locating and clamping position optimization using genetic algorithms,” Comput. Ind., Vol. 57, No. 2, pp. 112–120, 2006.

    Article  Google Scholar 

  16. Krishnakumar, K. and Melkote, S. N., “Machining fixture layout optimization using the genetic algorithm,” Int. J. Mach. Tools Manuf., Vol. 40, No. 4, pp. 579–598, 2000.

    Article  Google Scholar 

  17. Kulankara, K., Satyanarayana, S., and Melkote, S. N., “Iterative fixture layout and clamping force optimization using the genetic algorithm,” J. Manuf. Sci. Eng.-Trans. ASME., Vol. 124, No. 1, pp. 119–125, 2002.

    Article  Google Scholar 

  18. Liao, Y. J., Hu, S. J., and Stephenson, D. A., “Fixture layout optimization considering workpiece-fixture contact interaction: simulation results,” Trans. NAMRI/SME, Vol. 26, pp. 341–346, 1998.

    Google Scholar 

  19. Liu, S.-G., Zheng, L., Zhang, Z.-H., Li, Z.-Z., and Liu, D.-C., “Optimization of the number and positions of fixture locators in the peripheral milling of a low-rigidity workpiece,” Int. J. Adv. Manuf. Technol., Vol. 33, No. 7, pp. 668–676, 2007.

    Article  Google Scholar 

  20. Lu, Y., Qin, G., and Li, M., “A Cellular Genetic Algorithm Based Optimization of Clamping Forces for Fixture Design,” Adv. Sci. Lett., Vol. 4, No. 6–7, pp. 2342–2346, 2011.

    Article  Google Scholar 

  21. Prabhaharan, G., Padmanaban, K. P., and Krishnakumar, R., “Machining fixture layout optimization using FEM and evolutionary techniques,” Int. J. Adv. Manuf. Technol., Vol. 32, No. 11–12, pp. 1090–1103, 2007.

    Article  Google Scholar 

  22. Padmanaban, K. P. and Prabhaharan, G., “Dynamic analysis on optimal placement of fixturing elements using evolutionary techniques,” Int. J. Prod. Res., Vol. 46, No. 15, pp. 4177–4214, 2008.

    Article  MATH  Google Scholar 

  23. Padmanaban, K. P., Arulshri, K. P., and Prabhakaran, G., “Machining fixture layout design using ant colony algorithm based continuous optimization method,” Int. J. Adv. Manuf. Technol., Vol. 45. No. 9–10, pp. 922–934, 2009.

    Article  Google Scholar 

  24. Ratchev, S., Phuah, K., and Liu, S., “FEA-based methodology for the prediction of part-fixture behaviour and its applications,” J. Mater. Process. Technol., Vol. 191, No. 1–3, pp. 260–264, 2007.

    Article  Google Scholar 

  25. Sánchez, H., Estrems, M., and Faura, F., “Fixturing analysis methods for calculating the contact load distribution and the valid clamping regions in machining processes,” Int. J. Adv. Manuf. Technol., Vol. 29, No. 5, pp. 426–435, 2006.

    Article  Google Scholar 

  26. Satyanarayana, S. and Melkote, S. N., “Finite element modeling of fixture-workpiece contacts: single contact modeling and experimental verification,” Int. J. Mach. Tools Manuf., Vol. 44, No. 9, pp. 903–913, 2004.

    Article  Google Scholar 

  27. Siebenaler, S. P. and Melkote, S. N., “Prediction of workpiece deformation in a fixture system using the finite element method,” Int. J. Mach. Tools Manuf., Vol. 46, No. 1, pp. 51–58, 2006.

    Article  Google Scholar 

  28. Tan, E. Y. T., Kumar, A. S., Fuh, J. Y. H., and Nee, A. Y. C., “Modeling, analysis, and verification of optimal fixturing design,” IEEE Trans. Autom. Sci. Eng., Vol. 1, No. 2, pp. 121–132, 2004.

    Article  Google Scholar 

  29. Vishnupriyan, S., Majumder, M. C., and Ramachandran, K. P., “Optimal fixture parameters considering locator errors,” Int. J. Prod. Res., Vol. 49, No. 21, pp. 6343–6361, 2011.

    Article  Google Scholar 

  30. Wang, Y., Chen, X., Gindy, N., and Xie, J., “Elastic deformation of a fixture and turbine blades system based on finite element analysis,” Int. J. Adv. Manuf. Technol., Vol. 36, No. 3–4, pp. 296–304, 2008.

    Article  Google Scholar 

  31. Wang, Y., Xie, J., Wang, Z., and Gindy, N., “A parametric FEA system for fixturing of thin-walled cylindrical components,” J. Mater. Process. Technol., Vol. 205, No. 1–3, pp. 338–346, 2008.

    Article  Google Scholar 

  32. Xiong, C. H., Wang, M. Y., and Xiong, Y. L., “On Clamping Planning in Workpiece-Fixture Systems,” IEEE Trans. Autom. Sci. Eng., Vol. 5, No. 3, pp. 407–419, 2008.

    Article  MathSciNet  Google Scholar 

  33. Zuperl, U., Cus, F., and Vukelic, D., “Variable clamping force control for an inteligent fixturing,” J. Prod. Eng., Vol. 14, No. 1, pp. 19–22, 2011.

    Google Scholar 

  34. Hurtado, J. F. and Melkote, S. N., “Workpiece-fixture static friction under dynamic loading,” Wear, Vol. 231, No. 1, pp. 139–152, 1999.

    Article  Google Scholar 

  35. Liao, Y. G. and Hu, S. J., “An Integrated Model of a Fixture-Workpiece System for Surface Quality Prediction,” Int. J. Adv. Manuf. Technol., Vol. 17, No. 11, pp. 810–818, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djordje Vukelic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadic, B., Jeremic, B., Todorovic, P. et al. Efficient workpiece clamping by indenting cone-shaped elements. Int. J. Precis. Eng. Manuf. 13, 1725–1735 (2012). https://doi.org/10.1007/s12541-012-0227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0227-8

Keywords

Navigation