Skip to main content
Log in

Development of rotary tool for removal of intravascular blood clots

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Due to significant increase in the incidence of cardiovascular disease, the development of medical devices to treat thrombosis has recently been of great concern. In order to develop a rotational tool to remove vascular blood clots, it is especially important to understand the tribological behavior of the tool inside a vessel to effectively remove blood clots without any damage to the vessel. In this work, the grinding behaviors of different tools were experimentally investigated using clotted blood samples from cattle. Three tools of different shapes were designed and tested. We found that an elliptical design tool with four stainless steel blades (0.25 mm-thickness) yielded the smallest clot particles. In experiments using two other tools with stainless steel and fluoro carbon wires, stainless steel generated small particles more efficiently than fluoro carbon. Particle size decreased as the contact length of the tool edges and the rotational velocity of the tool increased. It is expected that the results of this work may be used to design superior devices for a variety of medical applications related to clot removal in blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matthew, D. R., Jennifer, B. L., Cornelis, V. V., Donald, P. G. and Kenneth, G. M., “Blood Clotting in Minimally Altered Whole Blood,” Blood, Vol. 88, No. 9, pp. 3432–3445, 1996.

    Google Scholar 

  2. Rauch, U., Osende, J. I., Fuster, V., Badimon, J. J., Fayad, Z. and Chesebro, J. H., “Thrombus Formation on Atherosclerotic Plaques: Pathogenesis and Clinical Consequences,” Ann. Intern. Med., Vol. 134, No. 3, pp. 224–238, 2001.

    Google Scholar 

  3. Zubkov, Y. N., Nikiforov, B. M. and Shustin, V. A., “Balloon Catheter Technique for Dilatation of Constricted Cerebral Arteries After Aneurysmal SAH,” Acta Neurochirurgica, Vol. 70, No. 1–2, pp. 65–79, 1984.

    Article  Google Scholar 

  4. Vicenzi, M. N., Meislitzer, T., Heitzinger, B., Halaj, M., Fleisher, L. A. and Metzler, H., “Coronary artery stenting and non-cardiac surgery–a prospective outcome study,” Br. J. Anaesth., Vol. 96, No. 6, pp. 686–693, 2006.

    Article  Google Scholar 

  5. Marks, M. P., Marcellus, M., Norbash, A. M., Steinberg, G. K., Tong, D. and Albers, G. W., “Outcome of angioplasty for atherosclerotic intracranial stenosis,” Stroke, Vol. 30, No. 5, pp. 1065–1069, 1999.

    Article  Google Scholar 

  6. Marks, M. P., Marcellus, M. L., Do, H. M., Schraedley-Desmond, P. K., Steinberg, G. K., Tong, D. C. and Albers, G. W., “Intracranial angioplasty without stenting for symptomatic atherosclerotic stenosis: long-term follow-up,” Am. J. Neuroradiol., Vol. 26, No. 3, pp. 525–530, 2005.

    Google Scholar 

  7. Mori, T., Fukuoka, M., Kazita, K. and Mori, K., “Follow-up study after intracranial percutaneous transluminal cerebral balloon angioplasty,” Am. J. Neuroradiol., Vol. 19, No. 8, pp. 1525–1533, 1998.

    Google Scholar 

  8. Arko, F. R., Davis, C. M., Murphy, E. H., Smith, S. T., Timaran, C. H., Modrall, J. G., Valentine, R. J. and Clagett, G. P., “Aggressive percutaneous mechanical thrombectomy of deep venous thrombosis: early clinical results,” Arch. Surg., Vol. 142, No. 6, pp. 513–519, 2007.

    Article  Google Scholar 

  9. Bertrand, M. E., Lablanche, J. M., Leroy, F., Bauters, C., Jaegere, P. D., Serruys, P. W., Meyer, J., Dietz, U. and Erbel, R., “Percutaneous Transluminal Coronary Rotary Ablation with Rotablator (European Experience),” Am. J. Cardiol., Vol. 69, No. 5, pp. 470–474, 1992.

    Article  Google Scholar 

  10. Anand, S. S., Yusuf, S., Pogue, J., Weitz, J. I. and Flather, M., “Long-Term Oral Anticoagulant Therapy in Patients With Unstable Angina or Suspected Non-Q-Wave Myocardial Infarction: Organization to Assess Strategies for Ischemic Syndromes (OASIS) Pilot Study Results,” Circulation, Vol. 98, No. 11, pp. 1064–1070, 1998.

    Google Scholar 

  11. Vogel, P. M., Bansal, V. and Marshall, M. W., “Thrombosed Hemodialysis Grafts: Lyse and Wait with Tissue Plasminogen Activator or Urokinase Compared to Mechanical Thrombolysis with the Arrow-Trerotola Percutaneous Thrombolytic Device,” J. Vasc. Interv. Radiol., Vol. 12, No. 10, pp. 1157–1165, 2001.

    Article  Google Scholar 

  12. Davis, G. B., Dowd, C. F., Bookstein, J. J., Maroney, T. P., Lang, E. V. and Halasz, N., “Thrombosed dialysis grafts: efficacy of intrathrombic deposition of concentrated urokinase, clot maceration, and angioplasty,” Am. J. Roentgenol., Vol. 149, No. 1, pp. 177–181, 1987.

    Google Scholar 

  13. Kerber, C. W., Barr, J. D., Berger, R. M. and Chopko, B. W., “Snare Retrieval of Intracranial Thrombus in Patients with Acute Stroke,” J. Vasc. Interv. Radiol., Vol. 13, No. 12, pp. 1269–1274, 2002.

    Article  Google Scholar 

  14. Savrasov, G. V. and Skvortsov, S. P., “Modern Surgical Devices for Treating Thromboses: Current Status and Prospects,” Biomedical Engineering, Vol. 34, No. 4, pp. 173–179, 2000.

    Article  Google Scholar 

  15. Mower, W. R., Quiõnes, W. J. and Gambhir, S. S., “Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress,” J. Vasc. Surg., Vol. 26, No. 4, pp. 602–608, 1997.

    Article  Google Scholar 

  16. Di Martino, E., Mantero, S., Inzoli, I., Melissano, G., Astore, D., Chiesa, R. and Fumero, R., “Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: Experimental characterisation and structural static computational analysis,” Eur. J. Vasc. Endovasc. Surg., Vol. 15, No. 4, pp. 290–299, 1998.

    Article  Google Scholar 

  17. Riha, P., Wang, X., Liao, R. and Stoltz, J. F., “Elasticity and fracture strain of whole blood clots,” Clin. Hemorheol. Microcirc., Vol. 21, No. 1, pp. 45–49, 1999.

    Google Scholar 

  18. Anand, M., Rajagopal, K. and Rajagopal, K. R., “A Model for the Formation and Lysis of Blood Clots,” Pathophysiol. Haemost. Thromb., Vol. 34, No. 2–3, pp. 109–120, 2005.

    Article  Google Scholar 

  19. Mackman, N., “Triggers, targets and treatments for thrombosis,” Nature, Vol. 451, No. 7181, pp. 914–918, 2008.

    Article  Google Scholar 

  20. Collet, J. P., Shuman, H., Ledger, R. E., Lee, S. T. and Weisel, J. W., “The elasticity of an individual fibrin fiber in a clot,” PNAS, Vol. 102, No. 26, pp. 9133–9137, 2005.

    Article  Google Scholar 

  21. Kim, Y. T., Park, S. J. and Lee, S. J., “Micro/Meso-scale Shapes Machining by Micro EDM Process,” Int. J. Precis. Eng. Manuf., Vol. 6, No. 2, pp. 5–11, 2005.

    Google Scholar 

  22. Kim, H. T., Yang, H. J. and Kim, S. C., “Control Method for the Tool Path Aspherical Surface Grinding and Polishing,” Int. J. Precis. Eng. Manuf., Vol. 7, No. 4, pp. 51–56, 2006.

    MathSciNet  Google Scholar 

  23. Isobe, H., Hara, K., Kyusojin, A., Okada, M. and Yoshihara, H., “Ultrasonically Assisted Grinding for Mirror Surface Finishing of Dies with Electroplated Diamond Tools,” Int. J. Precis. Eng. Manuf., Vol. 8, No. 2, pp. 38–43, 2007.

    Google Scholar 

  24. Alagumurthi, N., Palaniradja, K. and Soundararajan, V., “Cylindrical Grinding — A Review on Surface Integrity,” Int. J. Precis. Eng. Manuf., Vol. 8, No. 3, pp. 24–44, 2007.

    Google Scholar 

  25. Lin, T., Lee, J. W. and Bohez, E. L. J., “A new accurate curvature matching and optimal tool based five-axis machining algorithm,” Journal of Mechanical Science and Technology, Vol. 23, No. 10, pp. 2624–2634, 2009.

    Article  Google Scholar 

  26. Wei, J., Zhang, Q., Xu, Z. and Lyu, S. K., “Study on Precision Grinding of Screw Rotors using CBN Wheel,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 5, pp. 651–658, 2010.

    Article  Google Scholar 

  27. Jang, K. S., Kang, T. W., Lee, K. S., Kim, C. and Kim, T. W., “The effect of change in width on stress distribution along the curved segments of stents,” Journal of Mechanical Science and Technology, Vol. 24, No. 6, pp. 1265–1271, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CL., Kim, YT., Lee, KS. et al. Development of rotary tool for removal of intravascular blood clots. Int. J. Precis. Eng. Manuf. 13, 413–419 (2012). https://doi.org/10.1007/s12541-012-0053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0053-z

Keywords

Navigation