Skip to main content
Log in

A Study on the Microstructural Evolution, Interfacial Diffusion and Mechanical Properties of Ultra-thin Stainless Steel–Copper Composites Fabricated by Roll Bonding

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Systematic study on the microstructural evolution, interfacial diffusion and mechanical properties of ultra-thin stainless steel–copper composites (50 µm) after annealing treatment was conducted in the present study. The results show that the as-received specimen exhibits low elongation (0.031) as well as high strength (891.346 MPa) by work hardening, thus requires heat treatment to improve the plasticity. With the increase of annealing temperature from 700 to 1000 °C, the dislocation/grain boundary strengthening is weakened while the surface grains which exhibit fewer constraints is increasing, resulting in lower strength. Moreover, a uniform and refined microstructure with high recrystallization rate is formed inside stainless steel and copper matrixes for the specimens annealed at 900 °C, thereby improving the plasticity of ultra-thin stainless steel–copper composites. Additionally, an obvious strain gradient exists at the interface of ultra-thin stainless steel–copper composites, and the interdiffusion process between stainless steel and copper matrixes is primarily governed by the diffusion of Cu atoms. The influence of diffusion layer thickness on the strength of ultra-thin stainless steel–copper composites is negligible. Overall, an optimal annealing temperature of 900 °C is obtained with the improved plasticity of ultra-thin stainless steel–copper composites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Wang, F. Wang, D. Qian, F. Chen, Z. Dong, L. Hua, Investigation of damage mechanisms related to microstructural features of ferrite-cementite steels via experiments and multiscale simulations. Int. J. Plast. 170, 103745 (2023). https://doi.org/10.1016/j.ijplas.2023.103745

    Article  CAS  Google Scholar 

  2. T. Liu, X. Liu, P. Feng, A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Compos. Part B Eng. 191, 107958 (2020). https://doi.org/10.1016/j.compositesb.2020.107958

    Article  CAS  Google Scholar 

  3. G. Ma, P. He, H. Wang, H. Tian, L. Zhou, Q. Yong, M. Liu, H. Zhao, D. He, Promoting bonding strength between internal Al-Si based gradient coating and aluminum alloy cylinder bore by forming homo-epitaxial growth interface. Mater. Des. 227, 111764 (2023). https://doi.org/10.1016/j.matdes.2023.111764

    Article  CAS  Google Scholar 

  4. X. Huang, L. Chang, H. Zhao, Z. Cai, Study on craniocerebral dynamics response and helmet protective performance under the blast waves. Mater. Des. 224, 111408 (2022). https://doi.org/10.1016/j.matdes.2022.111408

    Article  Google Scholar 

  5. J. Xu, L. Chang, T. Chen, T. Ren, Y. Zhang, Z. Cai, Study of the bending properties of variable stiffness chain mail fabrics. Compos. Struct. 322, 117369 (2023). https://doi.org/10.1016/j.compstruct.2023.117369

    Article  Google Scholar 

  6. Y. Chen, Y. Mao, W. Lu, P. He, Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt. Laser Technol. 91, 197–202 (2017). https://doi.org/10.1016/j.optlastec.2016.12.028

    Article  CAS  Google Scholar 

  7. R. Gao, F. Li, W. Niu, P. Huo, Response mechanism of mechanical behavior with Mg plate microstructure evolution during Al/Mg/Al composite plate rolled by hard plate. Met. Mater. Int. 29(7), 2004–2016 (2023). https://doi.org/10.1007/s12540-022-01348-9

    Article  CAS  Google Scholar 

  8. R.-E. Dong, A.H. Assari, S. Yaghoobi, M. Mahmoodi, S. Ghaderi, Effect of volume fraction of Ti on microstructure evolution and thermal properties of Al/Ti laminated composites. Met. Mater. Int. 30(4), 1002–1014 (2024). https://doi.org/10.1007/s12540-023-01545-0

    Article  Google Scholar 

  9. F. Li, F. Chen, P. Gao, W. Wang, C. Yang, S. Liu, Effect of ultrasonic power on the microstructure and properties of 304 stainless steel welded joints through cold metal transfer welding assisted with ultrasonication. Met. Mater. Int. 29(10), 3039–3051 (2023). https://doi.org/10.1007/s12540-023-01419-5

    Article  Google Scholar 

  10. S. Kim, G. Kim, C.-Y. Oh, S. Song, Pitting and localized galvanic corrosion characteristics of gas tungsten arc welded austenitic stainless steel. Met. Mater. Int. 28(10), 2448–2461 (2022). https://doi.org/10.1007/s12540-021-01149-6

    Article  CAS  Google Scholar 

  11. M. Ebrahimi, G. Liu, Q. Wang, H. Jiang, W. Ding, Z. Shang, L. Luo, Evaluation of interface structure and high-temperature tensile behavior in Cu/Al8011/Al5052 trilayered composite. Mater. Sci. Eng. A 798, 140129 (2020). https://doi.org/10.1016/j.msea.2020.140129

    Article  CAS  Google Scholar 

  12. M. Ebrahimi, G. Liu, C. Li, Q. Wang, H. Jiang, W. Ding, F. Su, Experimental and numerical analysis of Cu/Al8011/Al1060 trilayered composite: a comprehensive study. J. Mater. Res. Technol. 9(6), 14695–14707 (2020). https://doi.org/10.1016/j.jmrt.2020.10.031

    Article  CAS  Google Scholar 

  13. M. Ren, H. Xie, F. Lin, F. Jia, M. Huo, H. Wu, M. Yang, Z. Jiang, Effect of heat treatment on the microstructure and mechanical properties of copper/SS304L composite sheets. Vacuum 204, 111370 (2022). https://doi.org/10.1016/j.vacuum.2022.111370

    Article  CAS  Google Scholar 

  14. M. Ren, F. Lin, F. Jia, H. Xie, M. Yang, Z. Jiang, Micro rolling fabrication of copper/SS304L micro composite channels. J. Manuf. Processes 90, 1–13 (2023). https://doi.org/10.1016/j.jmapro.2023.02.002

    Article  Google Scholar 

  15. L. Zhang, R. Gao, B. Zhao, M. Sun, K. Jing, X. Wang, T. Hao, Z. Xie, R. Liu, Q. Fang, C. Liu, Effects of annealing temperature and layer thickness on hardening behavior in cross accumulative roll bonded Cu/Fe nanolamellar composite. J. Alloys Compd. 827, 154312 (2020). https://doi.org/10.1016/j.jallcom.2020.154312

    Article  CAS  Google Scholar 

  16. L. Zhang, R. Gao, J. Hou, B. Zhao, M. Sun, T. Hao, Z. Xie, R. Liu, X. Wang, Q. Fang, C. Liu, Study on thermal stability and irradiation response of copper/iron nano-multilayer composite fabricated by cross accumulative roll bonding. J. Nucl. Mater. 543, 152548 (2021). https://doi.org/10.1016/j.jnucmat.2020.152548

    Article  CAS  Google Scholar 

  17. K.A. Al-Ghamdi, G. Hussain, SPIF of Cu/steel clad sheet: annealing effect on bond force and formability. Mater. Manuf. Process. 31(6), 758–763 (2016). https://doi.org/10.1080/10426914.2015.1048363

    Article  CAS  Google Scholar 

  18. K.A. Al-Ghamdi, G. Hussain, On the comparison of formability of roll-bonded steel–Cu composite sheet metal in incremental forming and stamping processes. Int. J. Adv. Manuf. Technol. 87(1), 267–278 (2016). https://doi.org/10.1007/s00170-016-8488-5

    Article  Google Scholar 

  19. H. Zhang, K. Jiao, J. Zhang, J. Liu, Microstructure and mechanical properties investigations of copper–steel composite fabricated by explosive welding. Mater. Sci. Eng. A 731, 278–287 (2018). https://doi.org/10.1016/j.msea.2018.06.051

    Article  CAS  Google Scholar 

  20. B. Liu, J. Wei, M. Yang, F. Yin, K. Xu, Effect of heat treatment on the mechanical properties of copper clad steel plates. Vacuum 154, 250–258 (2018). https://doi.org/10.1016/j.vacuum.2018.05.022

    Article  CAS  Google Scholar 

  21. M.H. Bina, F. Dehghani, M. Salimi, Effect of heat treatment on bonding interface in explosive welded copper/stainless steel. Mater. Des. 45, 504–509 (2013). https://doi.org/10.1016/j.matdes.2012.09.037

    Article  CAS  Google Scholar 

  22. X. Shi, G. Hussain, S.I. Butt, F. Song, D. Huang, Y. Liu, The state of residual stresses in the Cu/Steel bonded laminates after ISF deformation: an experimental analysis. J. Manuf. Processes 30, 14–26 (2017). https://doi.org/10.1016/j.jmapro.2017.09.009

    Article  Google Scholar 

  23. R. Feng, W. Zhao, K. Gan, M. Feng, Z. Li, Y. Pan, Z. Sun, J. Li, Investigation of interface microstructure and properties of copper/304 stainless steel fabricated by explosive welding. J. Mater. Res. Technol. 18, 2343–2353 (2022). https://doi.org/10.1016/j.jmrt.2022.03.142

    Article  CAS  Google Scholar 

  24. C. Zhu, J. Xu, H. Yu, D. Shan, B. Guo, Size effect on the high strain rate micro/meso-tensile behaviors of pure titanium foil. J. Mater. Res. Technol. 11, 2146–2159 (2021). https://doi.org/10.1016/j.jmrt.2021.02.022

    Article  CAS  Google Scholar 

  25. R. Zhao, X. Li, M. Wan, J. Han, B. Meng, Z. Cai, Fracture behavior of Inconel 718 sheet in thermal-aided deformation considering grain size effect and strain rate influence. Mater. Des. 130, 413–425 (2017). https://doi.org/10.1016/j.matdes.2017.05.089

    Article  CAS  Google Scholar 

  26. K. Wei, R. Hu, D. Yin, L. Xiao, S. Pang, Y. Cao, H. Zhou, Y. Zhao, Y. Zhu, Grain size effect on tensile properties and slip systems of pure magnesium. Acta Mater. 206, 116604 (2021). https://doi.org/10.1016/j.actamat.2020.116604

    Article  CAS  Google Scholar 

  27. Z. Xu, L. Peng, X. Lai, M. Fu, Geometry and grain size effects on the forming limit of sheet metals in micro-scaled plastic deformation. Mater. Sci. Eng. A 611, 345–353 (2014). https://doi.org/10.1016/j.msea.2014.05.060

    Article  CAS  Google Scholar 

  28. M. Fu, W. Chan, Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater. Des. 32(10), 4738–4746 (2011). https://doi.org/10.1016/j.matdes.2011.06.039

    Article  Google Scholar 

  29. S. Fu, D. Yu, Y. Chen, K. An, X. Chen, Size effect in stainless steel thin wires under tension. Mater. Sci. Eng. A 790, 139686 (2020). https://doi.org/10.1016/j.msea.2020.139686

    Article  CAS  Google Scholar 

  30. J. Zhao, M. Huo, X. Ma, F. Jia, Z. Jiang, Study on edge cracking of copper foils in micro rolling. Mater. Sci. Eng. A 747, 53–62 (2019). https://doi.org/10.1016/j.msea.2019.01.048

    Article  CAS  Google Scholar 

  31. S. Wang, L. Niu, C. Chen, Y. Pang, B. Liao, Z. Zhong, P. Lu, P. Li, X. Wu, J.W. Coenen, L. Cao, Y. Wu, Size effects on the tensile properties and deformation mechanism of commercial pure titanium foils. Mater. Sci. Eng. A 730, 244–261 (2018). https://doi.org/10.1016/j.msea.2018.06.009

    Article  CAS  Google Scholar 

  32. Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, ASTM Standard E8/E8M-08, 2008

  33. B. Lin, Investigating Annealing Twin Formation Mechanisms in Face-Centered Cubic Nickel (Carnegie Mellon University, Pittsburgh, PA, 2015)

    Google Scholar 

  34. Z. Li, J. Zhao, H. Wu, F. Jia, Y. Yao, Q. Zhang, S. Jiao, Z. Jiang, Experimental investigation on the mechanical and tribological coupled behaviour of bimetal composite under different states. Surf. Topogr. Metrol. Prop. 7(2), 025015 (2019). https://doi.org/10.1088/2051-672X/ab1e05

    Article  CAS  Google Scholar 

  35. H. Sabetghadam, A.Z. Hanzaki, A. Araee, A. Hadian, Microstructural evaluation of 410 SS/Cu diffusion-bonded joint. J. Mater. Sci. Technol. 26(2), 163–169 (2010). https://doi.org/10.1016/S1005-0302(10)60027-8

    Article  CAS  Google Scholar 

  36. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47(6), 1239–1263 (1999). https://doi.org/10.1016/S0022-5096(98)00103-3

    Article  Google Scholar 

  37. L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scr. Mater. 48(2), 119–125 (2003). https://doi.org/10.1016/S1359-6462(02)00335-4

    Article  CAS  Google Scholar 

  38. X. Cui, S. Zhang, Z. Wang, C. Zhang, C. Ni, C. Wu, Microstructure and fatigue behavior of 24CrNiMo low alloy steel prepared by selective laser melting. Mater. Sci. Eng. A 845, 143215 (2022). https://doi.org/10.1016/j.msea.2022.143215

    Article  CAS  Google Scholar 

  39. J.G. Gibeling, W.D. Nix, A numerical study of long range internal stresses associated with subgrain boundaries. Acta Metall. 28(12), 1743–1752 (1980). https://doi.org/10.1016/0001-6160(80)90027-9

    Article  CAS  Google Scholar 

  40. Y. Zhang, C. Yang, D. Zhou, Y. Zhe, L. Meng, X. Zhu, D. Zhang, Effect of stacking fault energy on microstructural feature and back stress hardening in Cu–Al alloys subjected to surface mechanical attrition treatment. Mater. Sci. Eng. A 740–741, 235–242 (2019). https://doi.org/10.1016/j.msea.2018.10.106

    Article  CAS  Google Scholar 

  41. D.N. Lee, Y.K. Kim, On the rule of mixtures for flow stresses in stainless-steel–clad aluminium sandwich sheet metals. J. Mater. Sci. 23(2), 558–564 (1988). https://doi.org/10.1007/BF01174685

    Article  CAS  Google Scholar 

  42. E.O. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 64(9), 747–753 (1951). https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  43. N.J. Petch, The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)

    CAS  Google Scholar 

  44. A. Hua, J. Zhao, Shear direction induced transition mechanism from grain boundary migration to sliding in a cylindrical copper bicrystal. Int. J. Plast. 156, 103370 (2022). https://doi.org/10.1016/j.ijplas.2022.103370

    Article  CAS  Google Scholar 

  45. R. Zhang, Z. Xu, L. Peng, X. Lai, M. Fu, Intragranularly misoriented grain boundary evolution affected by local constraints and grain size in micro-scale deformation of ultra-thin metallic sheets. Int. J. Plast. 157, 103377 (2022). https://doi.org/10.1016/j.ijplas.2022.103377

    Article  CAS  Google Scholar 

  46. J. Wang, M. Fu, S. Shi, Influences of size effect and stress condition on ductile fracture behavior in micro-scaled plastic deformation. Mater. Des. 131, 69–80 (2017). https://doi.org/10.1016/j.matdes.2017.06.003

    Article  Google Scholar 

  47. Z. Li, S. Rezaei, T. Wang, J. Han, X. Shu, Z. Pater, Q. Huang, Recent advances and trends in roll bonding process and bonding model: a review. Chin. J. Aeronaut. 36(4), 36–74 (2023). https://doi.org/10.1016/j.cja.2022.07.004

    Article  Google Scholar 

  48. M. Rout, R. Ranjan, S.K. Pal, S.B. Singh, EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel. Mater. Sci. Eng. A 711, 378–388 (2018). https://doi.org/10.1016/j.msea.2017.11.059

    Article  CAS  Google Scholar 

  49. S. Kumar, D. Samantaray, B. Aashranth, N. Keskar, M.A. Davinci, U. Borah, D. Srivastava, A.K. Bhaduri, Dependency of rate sensitive DRX behaviour on interstitial content of a Fe–Cr–Ni–Mo alloy. Mater. Sci. Eng. A 743, 148–158 (2019). https://doi.org/10.1016/j.msea.2018.11.062

    Article  CAS  Google Scholar 

  50. A. Hadadzadeh, F. Mokdad, M.A. Wells, D.L. Chen, A new grain orientation spread approach to analyze the dynamic recrystallization behavior of a cast-homogenized Mg–Zn–Zr alloy using electron backscattered diffraction. Mater. Sci. Eng. A 709, 285–289 (2018). https://doi.org/10.1016/j.msea.2017.10.062

    Article  CAS  Google Scholar 

  51. B. Mishra, V. Singh, R. Sarkar, A. Mukhopadhyay, K. Gopinath, V. Madhu, M.J.N.V. Prasad, Dynamic recovery and recrystallization mechanisms in secondary B2 phase and austenite matrix during hot deformation of Fe–Mn–Al–C-(Ni) based austenitic low-density steels. Mater. Sci. Eng. A 842, 143095 (2022). https://doi.org/10.1016/j.msea.2022.143095

    Article  CAS  Google Scholar 

  52. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y. Zhu, Mechanical properties of copper/bronze laminates: role of interfaces. Acta Mater. 116, 43–52 (2016). https://doi.org/10.1016/j.actamat.2016.06.023

    Article  CAS  Google Scholar 

  53. G.A. Davies, A.B. Ponter, I.A. Menzies, The diffusion of chromium in iron and low carbon steels. Acta Metall. 15(12), 1799–1804 (1967). https://doi.org/10.1016/0001-6160(67)90044-2

    Article  CAS  Google Scholar 

  54. C. Velmurugan, V. Senthilkumar, S. Sarala, J. Arivarasan, Low temperature diffusion bonding of Ti–6Al–4V and duplex stainless steel. J. Mater. Process. Technol. 234, 272–279 (2016). https://doi.org/10.1016/j.jmatprotec.2016.03.013

    Article  CAS  Google Scholar 

  55. C. Sun, L. Li, M. Fu, Q. Zhou, Element diffusion model of bimetallic hot deformation in metallurgical bonding process. Mater. Des. 94, 433–443 (2016). https://doi.org/10.1016/j.matdes.2016.01.058

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51975398), the Central Government Guided Local Science and Technology Development Fund Project (Grant No. YDZJSX2021A006), the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (Grant No. 20210035), the Fund Program for the Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2020-037), and the Fund for Shanxi “1331 Project”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Ma, X., Ma, L. et al. A Study on the Microstructural Evolution, Interfacial Diffusion and Mechanical Properties of Ultra-thin Stainless Steel–Copper Composites Fabricated by Roll Bonding. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01682-0

Keywords

Navigation