Skip to main content
Log in

Microstructure Evolution and Mechanical Properties at Ambient and Elevated Temperatures of in-situ TiB2/2219Al Matrix Composites During Cold Rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Cold rolling is one of the feasible and effective methods for regulating the microstructure and enhancing the mechanical properties of metallic materials. However, the cold rolling of particulate-reinforced aluminum matrix composites has been rarely studied comprehensively and systematically due to their limited plasticity. In this study, in-situ TiB2/2219Al matrix composites with a comparable ductility to 2219Al matrix were prepared and subjected to T3 treatment, which includes solution treatment, cold rolling, and natural ageing, with varying degrees of rolling reduction. The effects of cold rolling on the dislocation multiplication, grain and texture evolution, precipitation behavior, and mechanical properties were comprehensively investigated and discussed. The results reveal that both total dislocation density and geometrically necessary dislocation density increase with increasing rolling reduction. The average grain size progressively decreases under the joint influence of gradual growth of large grains and increase of small grains. Besides, rolling deformation changes the ageing behavior of composites, resulting in a decrease in precipitation temperature for both θ″ and θ′ phases. Under a large deformation, these phases precipitate at room temperature. Moreover, the types and proportions of textures undergoes a distinct evolution during deformation, with S, Copper and Brass textures being predominantly observed in the composite subjected to a 60% rolling reduction. Additionally, the increase in deformation results in an enhanced hardness and strength at both room temperature and 373 K. However, the strength initially increases but subsequently decreases at 573 K, and the composite with a 20% rolling reduction exhibits the highest strength at 573 K.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Zhao, X. Liu, Y. Fang, E. Guo, H. Kang, Z. Hao, J. Li, G. Du, L. Liu, Z. Chen, T. Wang, Multiscale microstructures, mechanical properties and electrical conductivity of in-situ dual-size TiB2 particles reinforced 6201 aluminum matrix composites. J. Mater. Res. Technol. 23, 5459–5473 (2023). https://doi.org/10.1016/j.jmrt.2023.02.174

    Article  CAS  Google Scholar 

  2. X. Wang, Y. Huang, T. Xu, D. Wang, X. Li, W. Wang, G. Hao, Preparation and mechanical behavior of Co-based hard particles reinforced aluminum matrix composites. J. Alloys Compd. 946, 169408 (2023). https://doi.org/10.1016/j.jallcom.2023.169408

    Article  CAS  Google Scholar 

  3. P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, S. Scudino, A heat treatable TiB2/Al–3.5Cu–1.5Mg–1Si composite fabricated by selective laser melting: microstructure, heat treatment and mechanical properties. Compos. Part B 147, 162–168 (2018). https://doi.org/10.1016/j.compositesb.2018.04.026

    Article  CAS  Google Scholar 

  4. B. Dong, Q. Li, Z. Wang, T. Liu, H. Yang, S. Shu, L. Chen, F. Qiu, Q. Jiang, L. Zhang, Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Compos. Part B 217, 108912 (2021). https://doi.org/10.1016/j.compositesb.2021.108912

    Article  CAS  Google Scholar 

  5. M. Qiu, H. Liu, X. Du, Z. Zhang, W. Hu, Microstructure and properties of Al–Si–Mg–Cu–Cr matrix composites reinforced using in situ TiB2 particles and (Ce + Yb). Int. J. Met. 17, 1815–1826 (2023). https://doi.org/10.1007/s40962-022-00898-3

    Article  CAS  Google Scholar 

  6. J. Tang, J. Geng, C. Xia, M. Wang, D. Chen, H. Wang, Superior strength and ductility of in situ nano TiB2/Al–Cu–Mg composites by cold rolling and post-aging treatment. Materials 12, 3626 (2019). https://doi.org/10.3390/ma12213626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. Wu, B. Liu, H. Kang, E. Guo, J. Li, G. Du, Z. Chen, T. Wang, Ultrasound-assisted dispersion of TiB2 nanoparticles in 7075 matrix hybrid composites. Mater. Sci. Eng. A 840, 142958 (2022). https://doi.org/10.1016/j.msea.2022.142958

    Article  CAS  Google Scholar 

  8. S. Yue, J. Qu, G. Li, S. Liu, Z. Guo, J. Jie, Y. Zhang, T. Li, Microstructure evolution and mechanical properties of Cu–3Ag–xZr alloys processed by equal channel angular pressing. J. Alloys Compd. 894, 162383 (2022). https://doi.org/10.1016/j.jallcom.2021.162383

    Article  CAS  Google Scholar 

  9. J. Li, F.S. Hage, Q.M. Ramasse, P. Schumacher, The nucleation sequence of α-Al on TiB2 particles in Al-Cu alloys. Acta Mater. 206, 116652 (2021). https://doi.org/10.1016/j.actamat.2021.116652

    Article  CAS  Google Scholar 

  10. K. Zhao, M. Liu, H. Kang, E. Guo, J. Li, L. Liu, Z. Chen, T. Wang, Formation mechanism of TiB2 nanoparticles and development of TiB2p/6201 nanocomposites as a neoteric conducting material. J. Alloys Compd. 916, 165461 (2022). https://doi.org/10.1016/j.jallcom.2022.165461

    Article  CAS  Google Scholar 

  11. H.L. Lee, W.H. Lu, L.I. Chan, Effect of cold rolling on the aging kinetics of Al2O3/6061 Al composite by differential scanning calorimetric technique. Scr. Metall. Mater. 25, 2165–2170 (1991). https://doi.org/10.1016/0956-716X(91)90293-A

    Article  CAS  Google Scholar 

  12. A.W. Bowen, M.G. Ardakani, J.F. Humphreys, Deformation and recrystallization textures in Al-SiC metal-matrix composites. Mater. Sci. Forum 157–162, 919–926 (1994). https://doi.org/10.4028/www.scientific.net/MSF.157-162.919

    Article  Google Scholar 

  13. C.Y. Dan, Z. Chen, G. Ji, S.H. Zhong, Y. Wu, F. Brisset, H.W. Wang, V. Ji, Microstructure study of cold rolling nanosized in-situ TiB2 particle reinforced Al composites. Mater. Des. 130, 357–265 (2017). https://doi.org/10.1016/j.matdes.2017.05.076

    Article  CAS  Google Scholar 

  14. C.Y. Dan, Z. Chen, M.H. Mathon, G. Ji, L.W. Li, Y. Wu, F. Brisset, L. Guo, H.W. Wang, V. Ji, Cold rolling texture evolution of TiB2 particle reinforced Al-based composites by Neutron Diffraction and EBSD analysis. Mater Charact 136, 293–301 (2018). https://doi.org/10.1016/j.matchar.2017.12.028

    Article  CAS  Google Scholar 

  15. L. Li, Z. Han, M. Gao, S. Li, H. Wang, H. Kang, E. Guo, Z. Chen, T. Wang, Microstructures, mechanical properties, and aging behavior of hybrid-sized TiB2 particulate-reinforced 2219 aluminum matrix composites. Mater. Sci. Eng. A 829, 142180 (2022). https://doi.org/10.1016/j.msea.2021.142180

    Article  CAS  Google Scholar 

  16. P. Skemer, I. Katayama, Z. Jiang, S. Karato, The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics 411, 157–167 (2005). https://doi.org/10.1016/j.tecto.2005.08.023

    Article  Google Scholar 

  17. R. Li, S. Zhang, H. Kang, Z. Chen, F. Yang, W. Wang, C. Zou, T. Li, T. Wang, Microstructure and texture evolution in the cryorolled CuZr alloy. J. Alloys Compd. 693, 592–600 (2017). https://doi.org/10.1016/j.jallcom.2016.09.209

    Article  CAS  Google Scholar 

  18. H. He, Y. Yi, S. Huang, Y. Zhang, Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al-Cu alloy. Mater. Sci. Eng. A 712, 414–423 (2018). https://doi.org/10.1016/j.msea.2017.11.124

    Article  CAS  Google Scholar 

  19. Y. Gao, B. Dong, F. Qiu, R. Geng, L. Wang, Q. Zhao, Q. Jiang, The superior elevated-temperature mechanical properties of Al–Cu–Mg–Si composites reinforced with in situ hybrid-sized TiCx–TiB2 particles. Mater. Sci. Eng. A 728, 157–164 (2018). https://doi.org/10.1016/j.msea.2018.05.024

    Article  CAS  Google Scholar 

  20. T. Liu, F. Qiu, B. Dong, R. Geng, M. Zha, H. Yang, S. Shu, Q. Jiang, Role of trace nanoparticles in establishing fully optimized microstructure configuration of cold-rolled Al alloy. Mater. Des. 206, 109743 (2021). https://doi.org/10.1016/j.matdes.2021.109743

    Article  CAS  Google Scholar 

  21. A.H. Baghdadi, A. Rajabi, N.F.M. Selamat, Z. Sajuri, M.Z. Omar, Effect of post-weld heat treatment on the mechanical behavior and dislocation density of friction stir welded Al6061. Mater. Sci. Eng. A 754, 728–734 (2019). https://doi.org/10.1016/j.msea.2019.03.017

    Article  CAS  Google Scholar 

  22. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  23. J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horita, T.G. Langdon, The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng. A 460–461, 77–85 (2007). https://doi.org/10.1016/j.msea.2007.01.001

    Article  CAS  Google Scholar 

  24. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527, 2738–2746 (2010). https://doi.org/10.1016/j.msea.2010.01.004

    Article  CAS  Google Scholar 

  25. D.A. Hughes, N. Hansen, D.J. Bammann, Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr. Mater. 48, 147–153 (2003). https://doi.org/10.1016/S1359-6462(02)00358-5

    Article  CAS  Google Scholar 

  26. R. Li, E. Guo, Z. Chen, H. Kang, W. Wang, C. Zou, T. Li, T. Wang, Optimization of the balance between high strength and high electrical conductivity in CuCrZr alloys through two-step cryorolling and aging. J. Alloys Compd. 771, 1044–1051 (2019). https://doi.org/10.1016/j.jallcom.2018.09.040

    Article  CAS  Google Scholar 

  27. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Pergamon, Oxford, 2004), p.53. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2

    Book  Google Scholar 

  28. C. Moussa, M. Bernacki, R. Besnard, N. Bozzolo, About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum, IOP Conf. Ser.: Mater. Sci. Eng. 89, 012038 (2015). https://doi.org/10.1088/1757-899X/89/1/012038

  29. C. Wang, H. Li, E. Guo, X. Wang, H. Kang, Z. Chen, T. Wang, The effect of Gd on the microstructure evolution and mechanical properties of Mg–4Zn–06Ca alloy. Mater. Sci. Eng. A 868, 144756 (2023). https://doi.org/10.1016/j.msea.2023.144756

    Article  CAS  Google Scholar 

  30. Q. Liu, D.J. Jensen, N. Hansen, Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Mater. 46, 5819–5838 (1998). https://doi.org/10.1016/S1359-6454(98)00229-8

    Article  CAS  Google Scholar 

  31. P.J. Konijnenberg, S. Zaefferer, D. Raabe, Assessment of geometrically necessary dislocation levels derived by 3D EBSD. Acta Mater. 99, 402–414 (2015). https://doi.org/10.1016/j.actamat.2015.06.051

    Article  CAS  Google Scholar 

  32. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60, 130–207 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.002

    Article  CAS  Google Scholar 

  33. B. Yang, Y. Wang, M. Gao, C. Wang, R. Guan, Microstructural evolution and strengthening mechanism of Al–Mg alloys with fine grains processed by accumulative continuous extrusion forming. J. Mater. Sci. Technol. 128, 195–204 (2022). https://doi.org/10.1016/j.jmst.2022.03.032

    Article  CAS  Google Scholar 

  34. M. Zha, H. Zhang, H. Jia, Y. Gao, S. Jin, G. Sha, R. Bjørge, R.H. Mathiesen, H.J. Roven, H. Wang, Y. Li, Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al–7Mg alloy. Int. J. Plast. 146, 103108 (2021). https://doi.org/10.1016/j.ijplas.2021.103108

    Article  CAS  Google Scholar 

  35. R. Jayaganthan, H.G. Brokmeier, B. Schwebke, S.K. Panigrahi, Microstructure and texture evolution in cryorolled Al 7075 alloy. J. Alloys Compd. 496, 183–188 (2010). https://doi.org/10.1016/j.jallcom.2010.02.111

    Article  CAS  Google Scholar 

  36. J. Liu, Q. Zhang, Z. Chen, L. Wang, G. Ji, Q. Shi, Y. Wu, F. Zhang, H. Wang, Fabrication of fine grain structures in Al matrices at elevated temperature by the stimulation of dual-size particles. Mater. Sci. Eng. A 805, 140614 (2021). https://doi.org/10.1016/j.msea.2020.140614

    Article  CAS  Google Scholar 

  37. O. Engler, X.W. Kong, K. Lücke, Development of microstructure and texture during rolling of single-phase and two-phase cube-oriented Al–Cu single crystals. Scr. Mater. 41, 493–503 (1999). https://doi.org/10.1016/S1359-6462(99)00180-3

    Article  CAS  Google Scholar 

  38. Z. Chen, G.A. Sun, Y. Wu, M.H. Mathon, A. Borbely, D. Chen, G. Ji, M.L. Wang, S.Y. Zhong, H.W. Wang, Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites. Mater. Des. 116, 577–590 (2017). https://doi.org/10.1016/j.matdes.2016.12.070

    Article  CAS  Google Scholar 

  39. H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys. Acta Mater. 52, 3239–3250 (2004). https://doi.org/10.1016/j.actamat.2004.03.030

    Article  CAS  Google Scholar 

  40. K. Zhao, G. Han, T. Gao, H. Yang, Z. Qian, K. Hu, G. Liu, J. Nie, X. Liu, Interface precipitation and corrosion mechanisms in a model Al–Zn–Mg–Cu alloy strengthened by TiC particles. Corros. Sci. 206, 110533 (2022). https://doi.org/10.1016/j.corsci.2022.110533

    Article  CAS  Google Scholar 

  41. Z. Hu, X. Li, J. Xi, L. Da, Microstructure evolution, texture and strengthening mechanism of Al–Mg alloy with a square pyramid part during hot gas bulging with clustering balls. J. Alloys Compd. 911, 165055 (2022). https://doi.org/10.1016/j.jallcom.2022.165055

    Article  CAS  Google Scholar 

  42. Z. Du, X. Liu, J. Gui, Y. Ke, L. Zhang, Influence of MnS inclusions on dynamic recrystallization and annealing twins formation during thermal deformation. J. Mater. Res. Technol. 16, 1371–1387 (2022). https://doi.org/10.1016/j.jmrt.2021.12.088

    Article  CAS  Google Scholar 

  43. Z.X. Li, M. Zhan, X.G. Fan, X.X. Wang, F. Ma, Age hardening behaviors of spun 2219 aluminum alloy component. J. Mater. Res. Technol. 9, 4706–4716 (2020). https://doi.org/10.1016/j.jmrt.2020.02.098

    Article  CAS  Google Scholar 

  44. B. Blessto, K. Sivaprasad, V. Muthupandi, M. Arumugam, DSC analysis on AA2219 plates processed by cryorolling and coldrolling. Mater. Res. Express 6, 1065c9 (2019). https://doi.org/10.1088/2053-1591/ab4040

    Article  CAS  Google Scholar 

  45. E.M. Elgallad, Z. Zhang, X.G. Chen, Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy. Mater. Sci. Eng. A 625, 213–220 (2015). https://doi.org/10.1016/j.msea.2014.12.002

    Article  CAS  Google Scholar 

  46. L. Wu, C. Zhou, X. Li, N. Ma, H. Wang, Effects of TiB2 particles on artificial aging response of high-Li-content TiB2/Al–Li-Cu composite. J. Alloys Compd. 749, 189–196 (2018). https://doi.org/10.1016/j.jallcom.2018.03.299

    Article  CAS  Google Scholar 

  47. P.P. Ma, C.H. Liu, C.L. Wu, L.M. Liu, J.H. Chen, Mechanical properties enhanced by deformation-modified precipitation of θ′-phase approximants in an Al–Cu alloy. Mater. Sci. Eng. A 676, 138–145 (2016). https://doi.org/10.1016/j.msea.2016.08.068

    Article  CAS  Google Scholar 

  48. N. Tsuji, T. Iwata, M. Sato, S. Fujimoto, Y. Minamino, Aging behavior of ultrafine grained Al–2 wt%Cu alloy severely deformed by accumulative roll bonding. Sci. Technol. Adv. Mat. 5, 173–180 (2004). https://doi.org/10.1016/j.stam.2003.10.019

    Article  CAS  Google Scholar 

  49. A. Deschamps, F. De Geuser, Z. Horita, S. Lee, G. Renou, Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy. Acta Mater. 66, 105–117 (2014). https://doi.org/10.1016/j.actamat.2013.11.071

    Article  CAS  Google Scholar 

  50. H.J. Roven, M. Liu, J.C. Werenskiold, Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy. Mater. Sci. Eng. A 483–484, 54–58 (2008). https://doi.org/10.1016/j.msea.2006.09.142

    Article  CAS  Google Scholar 

  51. Y. Huang, J.D. Robson, P.B. Prangnell, The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al–4 wt.% Cu alloy. Acta Mater. 58, 1643–1657 (2010). https://doi.org/10.1016/j.actamat.2009.11.008

    Article  CAS  Google Scholar 

  52. G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, T.G. Langdon, Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Mater. 57, 3123–3132 (2009). https://doi.org/10.1016/j.actamat.2009.03.017

    Article  CAS  Google Scholar 

  53. Y. Nasedkina, X. Sauvage, E.V. Bobruk, M.Y. Murashkin, R.Z. Valiev, N.A. Enikeev, Mechanisms of precipitation induced by large strains in the Al–Cu system. J. Alloys Compd. 710, 736–747 (2017). https://doi.org/10.1016/j.jallcom.2017.03.312

    Article  CAS  Google Scholar 

  54. M. Gazizov, R. Kaibyshev, Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy. Mater. Sci. Eng. A 625, 119–130 (2015). https://doi.org/10.1016/j.msea.2014.11.094

    Article  CAS  Google Scholar 

  55. Y. Zhang, S. Jin, P.W. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, J. Liu, J.M. Cairney, S.P. Ringer, G. Sha, Dynamic precipitation, segregation and strengthening of an Al–Zn–Mg–Cu alloy (AA7075) processed by high-pressure torsion. Acta Mater. 162, 19–32 (2019). https://doi.org/10.1016/j.actamat.2018.09.060

    Article  CAS  Google Scholar 

  56. P. Ma, C. Liu, Z. Ma, L. Zhan, M. Huang, Formation of a new intermediate phase and its evolution toward θ’ during aging of pre-deformed Al–Cu alloys. J. Mater. Sci. Technol. 35, 885–890 (2019). https://doi.org/10.1016/j.jmst.2018.11.022

    Article  CAS  Google Scholar 

  57. W. Huang, Z. Liu, M. Lin, X. Zhou, L. Zhao, A. Ning, S. Zeng, Reprecipitation behavior in Al–Cu binary alloy after severe plastic deformation-induced dissolution of θ′ particles. Mater. Sci. Eng. A 546, 26–33 (2012). https://doi.org/10.1016/j.msea.2012.03.010

    Article  CAS  Google Scholar 

  58. S. Wu, H.S. Soreide, B. Chen, J. Bian, C. Yang, C. Li, P. Zhang, P. Cheng, J. Zhang, Y. Peng, G. Liu, Y. Li, H.J. Roven, J. Sun, Freezing solute atoms in nanograined aluminum alloys via high-density vacancies. Nat. Commun. 13, 3495 (2022). https://doi.org/10.1038/s41467-022-31222-6

    Article  CAS  Google Scholar 

  59. J.Q. Liu, H.M. Wang, Z.H. Huang, Z.H. Ma, G.R. Li, P.J. Zhou, Enhanced strength-ductility synergy of aging treated (FeCoNi1.5CrCu)p/2024Al composite. J. Alloys Compd. 929, 167372 (2022). https://doi.org/10.1016/j.jallcom.2022.167372

    Article  CAS  Google Scholar 

  60. E.B. Moustafa, A.H. Elsheikh, M.A. Taha, The effect of TaC and NbC hybrid and mono-nanoparticles on AA2024 nanocomposites: microstructure, strengthening, and artificial aging. Nanotechnol. Rev. 11, 2513–2525 (2022). https://doi.org/10.1515/ntrev-2022-0144

    Article  CAS  Google Scholar 

  61. H. Yang, T. Gao, H. Zhang, J. Nie, X. Liu, Enhanced age-hardening behavior in Al–Cu alloys induced by in-situ synthesized TiC nanoparticles. J. Mater. Sci. Technol. 35, 374–382 (2019). https://doi.org/10.1016/j.jmst.2018.09.029

    Article  CAS  Google Scholar 

  62. M. Legros, G. Dehm, E. Arzt, T.J. Balk, Observation of giant diffusivity along dislocation cores. Science 319, 1646–1649 (2008). https://doi.org/10.1126/science.1151771

    Article  CAS  PubMed  Google Scholar 

  63. A. Deschamps, G. Fribourg, Y. Bréchet, J.L. Chemin, C.R. Hutchinson, In situ evaluation of dynamic precipitation during plastic straining of an Al–Zn–Mg–Cu alloy. Acta Mater. 60, 1905–1916 (2012). https://doi.org/10.1016/j.actamat.2012.01.002

    Article  CAS  Google Scholar 

  64. H.J. Bunge, Texture Analysis in Materials Science Mathematical Methods (Butterworths, Penang, 1982), pp.88–89. https://doi.org/10.1016/C2013-0-11769-2

    Book  Google Scholar 

  65. E.C. Frets, Thermo-mechanical evolution of the subcontinental lithospheric mantle in an extensional environment Insights from the Beni Bousera peridotite massif (Rif belt, Morocco), Ph.D. thesis, Universidad de Granada (2012)

  66. J.L. Guo, Z.M. Yin, P. Tang, B.C. Shang, Z.B. He, Microstructure and properties of Al–Cu–Mg–Sc–Zr aluminum alloy sheet at different orientations. J. Cent. South Univ. 42, 1923–1927 (2011). https://doi.org/10.1519/JSC.0b013e3181da7858

    Article  CAS  Google Scholar 

  67. Y. Chen, G. Zhao, C. Liu, L. Zuo, Recrystallization texture in cool rolled sheet of Al alloy 6111 after solution treatment. Chin. J. Nonferrous Met. 16, 333–338 (2006). https://doi.org/10.1016/S0379-4172(06)60085-1

    Article  CAS  Google Scholar 

  68. X.Y. Wen, Z.D. Long, W.M. Yin, T. Zhai, Z. Li, S.K. Das, Texture evolution in continuous casting aluminum alloy AA5052 hot band during biaxial stretching. Mater. Sci. Eng. A 454–455, 245–251 (2007). https://doi.org/10.1016/j.msea.2006.11.052

    Article  CAS  Google Scholar 

  69. F. Liu, Z. Liu, G. He, Effect of cold rolling on microstructure and hardness of annealed Al–Cu–Mg alloy. Arch. Civ. Mech. Eng. 22, 64 (2022). https://doi.org/10.1007/s43452-021-00372-7

    Article  Google Scholar 

  70. K. Sjølstad, O. Engler, S. Tangen, K. Marthinsen, E. Nes, Recrystallization textures and the evolution of the P-orientation as a function of precipitation in an AA3103 alloy. Mater. Sci. Forum 408–412, 1471–1476 (2002). https://doi.org/10.4028/www.scientific.net/MSF.408-412.1471

    Article  Google Scholar 

  71. O. Engler, P. Yang, X.W. Kong, On the formation of recrystallization textures in binary Al-1.3% Mn investigated by means of local texture analysis. Acta Mater. 44, 3349–3369 (1996). https://doi.org/10.1016/1359-6454(95)00416-5

    Article  CAS  Google Scholar 

  72. K. Lücke, O. Engler, Effects of particles on development of microstructure and texture during rolling and recrystallisation in fcc alloys. Mater. Sci. Techol. 6, 1113–1130 (1990). https://doi.org/10.1179/mst.1990.6.11.1113

    Article  Google Scholar 

  73. W.C. Liu, J.G. Morris, Evolution of recrystallization and recrystallization texture in continuous-cast AA 3015 aluminum alloy. Metall. Mater. Trans. A 36, 2829–2848 (2005). https://doi.org/10.1007/s11661-005-0279-9

    Article  Google Scholar 

  74. Y. Wang, B. Yang, M. Gao, E. Zhao, R. Guan, Microstructure evolution, mechanical property response and strengthening mechanism induced by compositional effects in Al–6 Mg alloys. Mater. Des. 220, 110849 (2022). https://doi.org/10.1016/j.matdes.2022.110849

    Article  CAS  Google Scholar 

  75. S. Zhang, H. Kang, R. Li, C. Zou, E. Guo, Z. Chen, T. Wang, Microstructure evolution, electrical conductivity and mechanical properties of dual-scale Cu5Zr/ZrB2 particulate reinforced copper matrix composites. Mater. Sci. Eng. A 762, 138108 (2019). https://doi.org/10.1016/j.msea.2019.138108

    Article  CAS  Google Scholar 

  76. X. Ma, H. Yang, B. Dong, S. Shu, Z. Wang, Y. Shao, Q. Jiang, F. Qiu, Novel method to achieve synergetic strength–ductility improvement of Al–Cu alloy by in situ TiC–TiB2 particles via direct reaction synthesis. Mater. Sci. Eng. A 869, 144810 (2023). https://doi.org/10.1016/j.msea.2023.144810

    Article  CAS  Google Scholar 

  77. B. Yang, M. Gao, Y. Liu, S. Pan, S. Meng, Y. Fu, R. Guan, Formation mechanism of refined Al6(Mn, Fe) phase particles during continuous rheo-extrusion and its contribution to tensile properties in Al–Mg–Mn–Fe alloys. Mater. Sci. Eng. A 872, 144952 (2023). https://doi.org/10.1016/j.msea.2023.144952

    Article  CAS  Google Scholar 

  78. F. Liu, Z. Liu, G. He, Making Al–Cu–Mg alloy tough by Goss-oriented grain refinement. J. Alloys Compd. 904, 164095 (2022). https://doi.org/10.1016/j.jallcom.2022.164095

    Article  CAS  Google Scholar 

  79. X. Li, K. Zhao, L. Yang, S. Shi, E. Guo, H. Kang, Z. Hao, Z. Chen, T. Wang, The role of TiB2 nanoparticles in reducing the microstructural sensitivity of as-cast Al–Mg–Mn alloy to cooling rate. Mater. Sci. Eng. A 894, 146157 (2024). https://doi.org/10.1016/j.msea.2024.146157

    Article  CAS  Google Scholar 

  80. M. Gao, H. Kang, Z. Chen, E. Guo, P. Peng, T. Wang, Effect of reinforcement content and aging treatment on microstructure and mechanical behavior of B4Cp/6061Al composites. Mater. Sci. Eng. A 744, 682–690 (2019). https://doi.org/10.1016/j.msea.2018.12.042

    Article  CAS  Google Scholar 

  81. J. Xu, B. Guan, Y. Xin, X. Wei, G. Huang, C. Liu, Q. Liu, A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy. J. Mater. Sci. Technol. 99, 251–259 (2022). https://doi.org/10.1016/j.jmst.2021.04.076

    Article  CAS  Google Scholar 

  82. H. Yang, S. Tian, T. Gao, J. Nie, Z. You, G. Liu, H. Wang, X. Liu, High-temperature mechanical properties of 2024 Al matrix nanocomposite reinforced by TiC network architecture. Mater. Sci. Eng. A 763, 138121 (2019). https://doi.org/10.1016/j.msea.2019.138121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No.2022YFB3400141), National Natural Science Foundation of China (Nos. 52174356, 52022017, 51927801, 51971051, and U22A20174), the Science and Technology Plan Project of Liaoning Province (Nos. 2022010005-JH6/1001 and 2022JH2/1013), the Innovation Foundation of Science and Technology of Dalian (Nos. 2020JJ25CY002 and 2020J12GX037) and the Fundamental Research Funds for the Central Universities. Jiehua Li acknowledges the financial support from Austrian Science Fund (FWF) (P 32378-N37).

Author information

Authors and Affiliations

Authors

Contributions

Linwei Li: Conceptualization, Investigation, Methodology, Writing—original draft. Donghu Zhou: Formal analysis, Investigation. Chengbin Wei: Formal analysis, Investigation. Zhenhao Han: Validation, Visualization. Jiehua Li: Writing—Review & Editing, Funding acquisition. Huijun Kang: Methodology, Funding acquisition. Enyu Guo: Writing—Review & Editing, Funding acquisition. Yubo Zhang: Methodology, Conceptualization. Zongning Chen: Conceptualization, Funding acquisition. Tongmin Wang: Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Yubo Zhang or Tongmin Wang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 816 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhou, D., Wei, C. et al. Microstructure Evolution and Mechanical Properties at Ambient and Elevated Temperatures of in-situ TiB2/2219Al Matrix Composites During Cold Rolling. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01680-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01680-2

Keywords

Navigation