Skip to main content
Log in

A Deep Neural Network Method for LCF Life Prediction of Metal Materials with Small Sample Experimental Data

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Compared to traditional methods, artificial neural networks can achieve low-cycle fatigue life more accurately when considering the effects of processes and environments on metal materials. However, extensive sample data are essential for training artificial neural networks. To address the sample shortage, this paper presents a deep neural network method. First, the small samples are divided into training and test samples. Second, the training samples are divided according to the processes. Then, the new samples are generated equally based on the division using beta-variational autoencoders. Finally, the ensemble learning model is used to predict the low-cycle fatigue life of metal materials using new samples. Min–Max normalization and log10 are used to standardize and destandardize samples in the deep neural network method. The deep neural network method is evaluated using the experimental data of Ti-685, Ti-6242S, Alloy D9, and AISI 4140 steel. Furthermore, the results reveal that the deep neural network method has good predictive performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Chen, Y.M. Liu, Fatigue modeling using neural networks: a comprehensive review. Fatigue Fract. Eng. Mater. Struct. 45, 945–979 (2022)

    Article  Google Scholar 

  2. C.B. Kalayci, S. Karagoz, Ö. Karakas, Soft computing methods for fatigue life estimation: a review of the current state and future trends. Fatigue Fract. Eng. Mater. Struct. 43, 2763–2785 (2020)

    Article  Google Scholar 

  3. M. Al-Assadi, H.A. El Kadi, I.M. Deiab, Using artificial neural networks to predict the fatigue life of different composite materials including the stress ratio effect. Appl. Compos. Mater. 18, 297–309 (2011)

    Article  Google Scholar 

  4. T.G. Sreekanth, M. Senthilkumar, R.S. Manikanta, Fatigue life evaluation of delaminated GFRP laminates using artificial neural networks. Trans. Indian Inst. Met. 74, 1439–1445 (2021)

    Article  CAS  Google Scholar 

  5. C.L. Hoffmann, An Investigation of High Temperature Low Cycle Fatigue Behavior of Materials (University of Connecticut, Storrs, 1981)

    Google Scholar 

  6. K. Reza Kashyzadeh, S. Ghorbani, New neural network-based algorithm for predicting fatigue life of aluminum alloys in terms of machining parameters. Eng. Fail. Anal. 146, 107128 (2023)

    Article  CAS  Google Scholar 

  7. S.H. Moon, R.M. Ma, R. Attardo, C. Tomonto, M. Nordin, P. Wheelock, M. Glavicic, M. Layman, R. Billo, T.F. Luo, Impact of surface and pore characteristics on fatigue life of laser powder bed fusion Ti–6Al–4V alloy described by neural network models. Sci. Rep. 11, 20424 (2021)

    Article  CAS  Google Scholar 

  8. K. Reza Kashyzadeh, E. Maleki, Experimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steel. J. Fail. Anal. Prev. 17, 1276–1287 (2017)

    Article  Google Scholar 

  9. S. Guo, C.Y. Li, J.G. Shi, F.J. Luan, X.Y. Song, Effect of quenching media and tempering temperature on fatigue property and fatigue life estimation based on RBF neural network of 0.44% carbon steel. Mech. Sci. 10, 273–286 (2019)

    Article  Google Scholar 

  10. F.M. Zeng, Y.B. Yan, Artificial neural network for the prediction of fatigue life of microscale single-crystal copper. Crystals 13, 539 (2023)

    Article  CAS  Google Scholar 

  11. V. Kovan, J. Hammer, R. Mai, M. Yuksel, Modelling by artificial neural network of high temperature fatigue life of oxide dispersion strengthened nickel-based superalloy PM 1000. Mater. High Temp. 25, 81–88 (2008)

    Article  CAS  Google Scholar 

  12. E. Maleki, O. Unal, K.K. Reza, Fatigue behavior prediction and analysis of shot peened mild carbon steels. Int. J. Fatigue 116, 48–67 (2018)

    Article  CAS  Google Scholar 

  13. H.J. Yang, J.X. Gao, P.N. Zhu, Q. Cheng, F. Heng, Y.Y. Liu, A machine learning method for HTLCF life prediction of titanium aluminum alloys with consideration of manufacturing processes. Eng. Fract. Mech. 286, 109331 (2023)

    Article  Google Scholar 

  14. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 2 (2014), pp. 2672–2680

  15. D.P. Kingma, M. Welling, Auto-encoding variational bayes. arXiv (2013). https://doi.org/10.48550/arXiv.1312.6114

  16. T. Zhang, P.F. Xia, F.F. Lu, 3D reconstruction of digital cores based on a model using generative adversarial networks and variational auto-encoders. J. Petrol. Sci. Eng. 207, 109151 (2021)

    Article  CAS  Google Scholar 

  17. T.F. Huang, G.Q. Cheng, K.H. Huang, Using variational auto encoding in credit card fraud detection. IEEE Access 8, 149841–149853 (2020)

    Article  Google Scholar 

  18. J.Y. Yang, G.Z. Kang, Q.H. Kan, A novel deep learning approach of multiaxial fatigue life-prediction with a self-attention mechanism characterizing the effects of loading history and varying temperature. Int. J. Fatigue 162, 106851 (2022)

    Article  Google Scholar 

  19. H.J. Wang, B. Li, F.Z. Xuan, Fatigue-life prediction of additively manufactured metals by continuous damage mechanics (CDM)-informed machine learning with sensitive features. Int. J. Fatigue 164, 107147 (2022)

    Article  CAS  Google Scholar 

  20. D. Singh, B. Singh, Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 97(Part B), 105524 (2020)

    Article  Google Scholar 

  21. X.C. Zhang, J.G. Gong, F.Z. Xuan, A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures. Int. J. Fatigue 258, 108130 (2021)

    Google Scholar 

  22. T. Pekhovsky, M. Korenevsky, Investigation of using VAE for i-vector speaker verification. arXiv (2017). https://doi.org/10.48550/arXiv.1705.09185

  23. I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner. beta-VAE: learning basic visual concepts with a constrained variational framework. In International Conference on Learning Representations (2017)

  24. H.D. Hu, Y.P. Song, J.Y. Yu, Y. Liu, F. Chen, The application of support vector regression and virtual sample generation technique in the optimization design of transonic compressor. Aerosp. Sci. Technol. 130, 107814 (2022)

    Article  Google Scholar 

  25. Z.F. Zhang, Y. Song, H.C. Cui, J.N. Wu, F. Schwartz, H.R. Qi, Topological analysis and gaussian decision tree: effective representation and classification of biosignals of small sample size. IEEE Trans. Biomed. Eng. 64, 2288–2299 (2017)

    Article  Google Scholar 

  26. Q.B. Liu, W.K. Shi, Z.Y. Chen, Fatigue life prediction for vibration isolation rubber based on parameter-optimized support vector machine model. Fatigue Fract. Eng. Mater. Struct. 42, 710–718 (2019)

    Article  Google Scholar 

  27. N. Sindhwani, R. Anand, S. Meivel, R. Shukla, M.P. Yadav, V. Yadav, Performance analysis of deep neural networks using computer vision. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 8, e3 (2021)

    Google Scholar 

  28. X.C. Zhang, J.G. Gong, F.Z. Xuan, A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions. Int. J. Fatigue 148, 106236 (2021)

    Article  CAS  Google Scholar 

  29. M. Bartošák, Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading. Int. J. Fatigue 163, 107067 (2022)

    Article  Google Scholar 

  30. J.Y. Yang, G.Z. Kang, Y.J. Liu, K.J. Chen, Q.H. Kan, Life prediction for rate-dependent low-cycle fatigue of PA6 polymer considering ratchetting: semi-empirical model and neural network based approach. Int. J. Fatigue 136, 105619 (2020)

    Article  CAS  Google Scholar 

  31. X.C. Zhong, R.K. Xie, S.H. Qin, K.S. Zhang, A process-data-driven BP neural network model for predicting interval-valued fatigue life of metals. Eng. Fract. Mech. 276, 108918 (2022)

    Article  Google Scholar 

  32. E. Maleki, O. Unal, Shot peening process effects on metallurgical and mechanical properties of 316 L steel via: experimental and neural network modeling. Met. Mater. Int. 27, 262–276 (2021)

    Article  CAS  Google Scholar 

  33. J.H. Kim, N.S. Reddy, J.T. Yeom, J.K. Hong, C.S. Lee, N.K. Park, Microstructure prediction of two-phase titanium alloy during hot forging using artificial neural networks and FE simulation. Met. Mater. Int. 15, 427–437 (2009)

    Article  CAS  Google Scholar 

  34. J.X. Gao, F. Heng, Y.P. Yuan, Y.Y. Liu, Fatigue reliability analysis of composite material considering the growth of effective stress and critical stiffness. Aerospace 10, 785 (2023)

    Article  Google Scholar 

  35. L. Gan, H. Wu, Z. Zhong, Fatigue life prediction in presence of mean stresses using domain knowledge-integrated ensemble of extreme learning machines. Fatigue Fract. Eng. Mater. Struct. 45, 2748–2766 (2022)

    Article  Google Scholar 

  36. R. Sandhya, K. Bhanu Sankara Rao, S.L. Mannan, R. Devanathan, Substructural recovery in a cold worked Ti-modified austenitic stainless steel during high temperature low cycle fatigue. Int. J. Fatigue 23, 789–797 (2001)

    Article  CAS  Google Scholar 

  37. M. Badaruddin, Sugiyanto, H. Wardono, Andoko, C.J. Wang, A.K. Rivai, Improvement of low-cycle fatigue resistance in AISI 4140 steel by annealing treatment. Int. J. Fatigue 125, 406–417 (2019)

    Article  CAS  Google Scholar 

  38. X.N. Liu, W.B. Shangguan, X.Z. Zhao, Residual fatigue life prediction of natural rubber components under variable amplitude loads. Int. J. Fatigue 165, 107199 (2022)

    Article  Google Scholar 

  39. R.W. Landgraf, F.D. Richards, N.R. LaPointe, Fatigue life predictions for a notched member under complex load histories. SAE Trans. 84, 249–259 (1975)

    Google Scholar 

  40. P. D’Antuono, An analytical relation between the Weibull and Basquin laws for smooth and notched specimens and application to constant amplitude fatigue. Fatigue Fract. Eng. Mater. Struct. 43, 991–1004 (2020)

    Article  Google Scholar 

  41. Y. Miyazawa, F. Briffod, T. Shiraiwa, M. Enoki, Prediction of cyclic stress–strain property of steels by crystal plasticity simulations and machine learning. Materials 12, 3668 (2019)

    Article  CAS  Google Scholar 

  42. S.S. Manson, A complex subject-some simple approximations. Exp. Mech. 5, 193–226 (1965)

    Article  Google Scholar 

  43. J.X. Gao, F. Heng, Y.P. Yuan, Y.Y. Liu, A novel machine learning method for multiaxial fatigue life prediction: improved adaptive neuro-fuzzy inference system. Int. J. Fatigue 178, 108007 (2024)

    Article  Google Scholar 

  44. T. Thankachan, K. Soorya Prakash, V. Kavimani, S.R. Silambarasan, Machine learning and statistical approach to predict and analyze wear rates in copper surface composites. Met. Mater. Int. 27, 220–234 (2021)

    Article  CAS  Google Scholar 

  45. S. Dutta, P.S. Robi, Experimental investigation and modeling of creep curve of Zr-2.5Nb alloy by machine learning techniques. Metals Mater. Int. 28, 2884–2897 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.52065062), Fundamental Research Funds for Universities in Xinjiang Uygur Autonomous Region (Grant No.XJEDU2023P007), Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No.2020D01C056), and Key Research and Development Program of Xinjiang Uygur Autonomous Region (Grant No.2021B01003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiong Gao.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Gao, J., Heng, F. et al. A Deep Neural Network Method for LCF Life Prediction of Metal Materials with Small Sample Experimental Data. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-023-01601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-023-01601-9

Keywords

Navigation