Skip to main content
Log in

Hot Workability of a Typical Ultrahigh Strength Steel During the Isothermal Forging Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Hot compression experiments are conducted on the Gleeble-3500 device to study the flow behaviors and hot workability of typical ultrahigh strength steel (UHSS) during the isothermal forging process. An improved Johnson–Cook (J–C) constitutive model is proposed to describe the flow behaviors, which considers the interaction effect of different deformation parameters. The proposed constitutive model shows a high prediction accuracy with an average absolute error of 5.07%. Furthermore, according to the critical strain and the logarithm of the Zener–Hollomon parameter, the mathematical models for the distribution and size of austenite grains are established, which can be used to quantitatively evaluate the effects of dynamic recrystallization (DRX) on the microstructure evolution. Considering the importance of microstructures, a new evaluation approach for hot workability is proposed, which integrates the grain size and DRX degree in the traditional processing maps. In comparison to the traditional processing maps, the newly proposed optimization method can assure the full occurrence of DRX, uniformity and fineness of grains, and absence of flow instability within the optimized processing parameter range. The processing parameters can be optimized to 0.01–0.075 s−1 and 1263–1363 K by the newly proposed evaluation approach. The average grain size of the UHSS is 20.85–40.66 μm within the optimized processing parameters, which well meets the grain size requirements for forgings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. D.X. Wen, C.X. Gao, Z.Z. Zheng, K. Wang, Y.B. Xiong, J.K. Wang, J.J. Li, J. Mater. Res. Technol. 13, 1684–1697 (2021). https://doi.org/10.1016/j.jmrt.2021.05.100

    Article  CAS  Google Scholar 

  2. M.J. Zhao, L. Huang, R. Zeng, D.X. Wen, H.L. Su, J.J. Li, Mater. Sci. Eng. A 765, 138300 (2019). https://doi.org/10.1016/j.msea.2019.138300

    Article  CAS  Google Scholar 

  3. C.M. Li, L. Huang, M.J. Zhao, X.T. Zhang, J.J. Li, P.C. Li, Mater. Sci. Eng. A 797, 139925 (2020). https://doi.org/10.1016/j.msea.2020.139925

    Article  CAS  Google Scholar 

  4. M.J. Zhao, L. Huang, R. Zeng, H.L. Su, D.X. Wen, J.J. Li, Mater. Charact. 159, 109997 (2020). https://doi.org/10.1016/j.matchar.2019.109997

    Article  CAS  Google Scholar 

  5. X.T. Zhong, L. Wang, L.K. Huang, F. Liu, J. Mater. Sci. Technol. 42, 241–253 (2020). https://doi.org/10.1016/j.jmst.2019.08.058

    Article  CAS  Google Scholar 

  6. Y.B. Xiong, D.X. Wen, J.J. Li, K. Wang, Z.Z. Zheng, Met. Mater. Int. 27, 3945–3958 (2021). https://doi.org/10.1007/s12540-020-00944-x

    Article  CAS  Google Scholar 

  7. R. Zeng, L. Huang, J.J. Li, H.W. Li, H. Zhu, X.T. Zhang, Int. J. Plast. 120, 64–87 (2019). https://doi.org/10.1016/j.ijplas.2019.04.010

    Article  CAS  Google Scholar 

  8. R.H. Buzolin, M. Lasnik, A. Krumphals, M.C. Poletti, Int. J. Plast. 136, 102862 (2021). https://doi.org/10.1016/j.ijplas.2020.102862

    Article  CAS  Google Scholar 

  9. S.H. Liu, Q.L. Pan, M.J. Li, X.D. Wang, X. He, X.Y. Li, Z.W. Peng, J.P. Lai, Mater. Des. 184, 108181 (2019). https://doi.org/10.1016/j.matdes.2019.108181

    Article  CAS  Google Scholar 

  10. B. Jia, H.R. Ma, Y. Peng, Steel Res. Int. 91, 1900372 (2019). https://doi.org/10.1002/srin.201900372

    Article  CAS  Google Scholar 

  11. P. Wan, H. Zou, K.L. Wang, Z.Z. Zhao, Met. Mater. Int. 27, 4235–4249 (2021). https://doi.org/10.1007/s12540-021-01016-4

    Article  CAS  Google Scholar 

  12. P. Opěla, I. Schindler, P. Kawulok, R. Kawulok, S. Rusz, M. Sauer, Mater. Des. 220, 110880 (2022). https://doi.org/10.1016/j.matdes.2022.110880

    Article  CAS  Google Scholar 

  13. G.W. Ge, Z.M. Wang, L.Q. Zhang, J.P. Lin, Mater. Today Commun. 27, 102405 (2021). https://doi.org/10.1016/j.mtcomm.2021.102405

    Article  CAS  Google Scholar 

  14. A. Asgharzadeh, H. Asgharzadeh, A. Simchi, Met. Mater. Int. 27, 5212–5227 (2021). https://doi.org/10.1007/s12540-020-00950-z

    Article  CAS  Google Scholar 

  15. Y.B. Xiong, D.X. Wen, Z.Z. Zheng, C.Y. Sun, J. Xie, J.J. Li, Met. Mater. Int. 29, 3009–3023 (2023). https://doi.org/10.1007/s12540-023-01428-4

    Article  CAS  Google Scholar 

  16. X.Q. Shang, Z.S. Cui, M.W. Fu, Int. J. Mech. Sci. 144, 800–812 (2018). https://doi.org/10.1016/j.ijmecsci.2018.06.030

    Article  Google Scholar 

  17. H. Zhu, H.A. Ou, A. Popov, Mech. Mater. 157, 103817 (2021). https://doi.org/10.1016/j.mechmat.2021.103817

    Article  Google Scholar 

  18. M.J. Zhao, L. Huang, C.M. Li, Y. Su, S.Q. Guo, J.J. Li, C.Y. Sun, P.C. Li, Steel Res. Int. 94, 2200648 (2023). https://doi.org/10.1002/srin.202200648

    Article  CAS  Google Scholar 

  19. Y. Liu, M. Li, X.W. Ren, Z.B. Xiao, X.Y. Zhang, Y.C. Huang, Trans. Nonferrous Met. Soc. China 30, 3031–3042 (2020). https://doi.org/10.1016/s1003-6326(20)65440-1

    Article  CAS  Google Scholar 

  20. X.R. Chen, Q.Y. Liao, Y.X. Niu, W.T. Jia, Q.C. Le, C.L. Cheng, F.X. Yu, J.Z. Cui, J. Mater. Res. Technol. 8, 1859–1869 (2019). https://doi.org/10.1016/j.jmrt.2019.01.003

    Article  CAS  Google Scholar 

  21. Z. Savaedi, R. Motallebi, H. Mirzadeh, J. Alloy. Compd. 903, 163964 (2022). https://doi.org/10.1016/j.jallcom.2022.163964

    Article  CAS  Google Scholar 

  22. H.R.R. Ashtiani, A.A. Shayanpoor, Trans. Nonferrous Met. Soc. China 31, 345–357 (2021). https://doi.org/10.1016/s1003-6326(21)65500-0

    Article  CAS  Google Scholar 

  23. Y.C. Lin, Q.F. Li, Y.C. Xia, L.T. Li, Mater. Sci. Eng. A 534, 654–662 (2012). https://doi.org/10.1016/j.msea.2011.12.023

    Article  CAS  Google Scholar 

  24. M.J. Zhao, L. Huang, C.M. Li, J.H. Xu, X.Y. Li, J.J. Li, P.C. Li, C.Y. Sun, Acta Metall. Sin. Engl. Lett. 35, 996–1010 (2022). https://doi.org/10.1007/s40195-021-01330-1

    Article  CAS  Google Scholar 

  25. Y. Li, P.J. Hou, Z.G. Wu, Z.L. Feng, Y. Ren, H. Choo, Mater. Des. 202, 109562 (2021). https://doi.org/10.1016/j.matdes.2021.109562

    Article  CAS  Google Scholar 

  26. C.M. Li, Y.B. Tan, F. Zhao, J. Iron. Steel Res. Int. 27, 1073–1086 (2020). https://doi.org/10.1007/s42243-020-00462-5

    Article  CAS  Google Scholar 

  27. R.C. Chen, P. Guo, Z.Z. Zheng, J.J. Li, F. Feng, Materials 11, 972 (2018). https://doi.org/10.3390/ma11060972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J.H. Beynon, C.M. Sellars, ISIJ Int. 32, 359–367 (1992). https://doi.org/10.2355/isijinternational.32.359

    Article  CAS  Google Scholar 

  29. W.C. Xu, X.Z. Jin, W.D. Xiong, X.Q. Zeng, D.B. Shan, Mater Charact 135, 154–166 (2018). https://doi.org/10.1016/j.matchar.2017.11.026

    Article  CAS  Google Scholar 

  30. Y. Guan, Y.C. Liu, Z.Q. Ma, H.J. Li, H.Y. Yu, Met. Mater. Int. 28, 1488–1498 (2022). https://doi.org/10.1007/s12540-021-01017-3

    Article  CAS  Google Scholar 

  31. Q. Chen, L. Hu, M.G. Li, Y. Chen, L.X. Shi, T. Zhou, M.B. Yang, J. Mater. Eng. Perform. 31, 2257–2266 (2022). https://doi.org/10.1007/s11665-021-06305-y

    Article  CAS  Google Scholar 

  32. X. Nie, S. Dong, F.H. Wang, L. Jin, Z.Y. Zhang, J. Dong, Y.Z. Wang, J. Mater. Process. Technol. 275, 116328 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116328

    Article  CAS  Google Scholar 

  33. B. Ke, L.Y. Ye, J.G. Tang, Y. Zhang, S.D. Liu, H.Q. Lin, Y. Dong, X.D. Liu, J. Alloy. Compd. 845, 156113 (2020). https://doi.org/10.1016/j.jallcom.2020.156113

    Article  CAS  Google Scholar 

  34. M.J. Wang, W.R. Wang, Z.L. Liu, C.Y. Sun, L.Y. Qian, Mater. Today Commun. 14, 188–198 (2018). https://doi.org/10.1016/j.mtcomm.2018.01.009

    Article  CAS  Google Scholar 

  35. D.D. Zhou, W.D. Zeng, J.W. Xu, W. Chen, S.M. Wang, Adv. Eng. Mater. 21, 1801232 (2019). https://doi.org/10.1002/adem.201801232

    Article  CAS  Google Scholar 

  36. P. Guo, L. Deng, X.Y. Wang, J.J. Li, Sci. China Technol. Sci. 62, 1534–1544 (2019). https://doi.org/10.1007/s11431-018-9412-1

    Article  CAS  Google Scholar 

  37. M.R. Barnett, A.G. Beer, D. Atwell, A. Oudin, Scripta Mater. 51, 19–24 (2004). https://doi.org/10.1016/j.scriptamat.2004.03.023

    Article  CAS  Google Scholar 

  38. F.F. Liu, J.Y. Chen, J.X. Dong, M.C. Zhang, Z.H. Yao, Mater. Sci. Eng. A 651, 102–115 (2016). https://doi.org/10.1016/j.msea.2015.10.099

    Article  CAS  Google Scholar 

  39. G.R. Johnson, W.H. Cook, Eng. Fract. Mech. 21, 31–48 (1985). https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  40. A. Shokry, S. Gowid, G. Kharmanda, Mater. Today Commun. 27, 102296 (2021). https://doi.org/10.1016/j.mtcomm.2021.102296

    Article  CAS  Google Scholar 

  41. Z. Jia, B.L. Wei, X. Sun, J.J. Ji, Y.J. Wang, L.D. Yu, Trans. Nonferrous Met. Soc. China 32, 3259–3275 (2022). https://doi.org/10.1016/s1003-6326(22)66018-7

    Article  CAS  Google Scholar 

  42. P. Wan, H. Zou, K.L. Wang, Z.Z. Zhao, J. Alloy. Compd. 826, 154047 (2020). https://doi.org/10.1016/j.jallcom.2020.154047

    Article  CAS  Google Scholar 

  43. Z.W. Zhang, H. Li, Y.W. Zhou, W.M. Guo, R. Jiang, Y.J. Zhu, Steel Res. Int. 92, 2100140 (2021). https://doi.org/10.1002/srin.202100140

    Article  CAS  Google Scholar 

  44. Z.H. Wang, W.T. Fu, B.Z. Wang, W.H. Zhang, Z.Q. Lv, P. Jiang, Mater Charact 61, 25–30 (2010). https://doi.org/10.1016/j.matchar.2009.10.001

    Article  CAS  Google Scholar 

  45. S.K. Rajput, G.P. Chaudhari, S.K. Nath, J. Mater. Process. Technol. 237, 113–125 (2016). https://doi.org/10.1016/j.jmatprotec.2016.06.008

    Article  CAS  Google Scholar 

  46. R.S. Qi, B.F. Guo, X.G. Liu, M. Jin, J. Iron. Steel Res. Int. 21, 1116–1123 (2014). https://doi.org/10.1016/S1006-706x(14)60192-8

    Article  CAS  Google Scholar 

  47. B. Wu, J.B. Li, L.Z. Liu, X.H. Chen, J. Tan, J.F. Song, M. Rashad, F.S. Pan, Acta Metall. Sin. Engl. Lett. 34, 606–616 (2020). https://doi.org/10.1007/s40195-020-01163-4

    Article  Google Scholar 

  48. Y.T. Wang, J.B. Li, Y.C. Xin, C.Z. Li, Y. Cheng, X.H. Chen, M. Rashad, B. Liu, Y. Liu, Mater. Sci. Eng. A 768, 138483 (2019). https://doi.org/10.1016/j.msea.2019.138483

    Article  CAS  Google Scholar 

  49. Y.J. Li, Y. Zhang, Z.Y. Chen, Z.C. Ji, H.Y. Zhu, C.F. Sun, W.P. Dong, X. Li, Y. Sun, S. Yao, J. Alloy. Compd. 847, 156507 (2020). https://doi.org/10.1016/j.jallcom.2020.156507

    Article  CAS  Google Scholar 

  50. G. Varela-Castro, J.M. Cabrera, J.M. Prado, Metals 10, 135 (2020). https://doi.org/10.3390/met10010135

    Article  CAS  Google Scholar 

  51. P.D. Hodgson, R.K. Gibbs, ISIJ Int. 32, 1329–1338 (1992). https://doi.org/10.2355/isijinternational.32.1329

    Article  CAS  Google Scholar 

  52. Z.M. Cai, H.C. Ji, W.C. Pei, X.F. Tang, X.M. Huang, J.P. Liu, Vacuum 165, 324–336 (2019). https://doi.org/10.1016/j.vacuum.2019.04.041

    Article  CAS  Google Scholar 

  53. F. Chen, J. Liu, H.A. Ou, B. Lu, Z.S. Cui, H. Long, Mater. Sci. Eng. A 642, 279–287 (2015). https://doi.org/10.1016/j.msea.2015.06.093

    Article  CAS  Google Scholar 

  54. H.J. Wang, Z.T. Hu, J.S. Cao, S. Zhang, T. Cheng, Q.Y. Wang, Met. Mater. Int. 28, 514–522 (2022). https://doi.org/10.1007/s12540-021-01057-9

    Article  Google Scholar 

  55. Y. Liu, L.X. Du, K.B. Tu, H.Y. Wu, R.D.K. Misra, Steel Res. Int. 90, 1900114 (2019). https://doi.org/10.1002/srin.201900114

    Article  CAS  Google Scholar 

  56. M.J. Zhao, L. Huang, C.M. Li, J.J. Li, P.C. Li, Mater. Sci. Eng. A 810, 141031 (2021). https://doi.org/10.1016/j.msea.2021.141031

    Article  CAS  Google Scholar 

  57. S.Y. Jiang, Y. Wang, B.Y. Yan, Y.Q. Zhang, J. Alloy. Compd. 806, 1153–1165 (2019). https://doi.org/10.1016/j.jallcom.2019.07.316

    Article  CAS  Google Scholar 

  58. D.D. Lu, J.F. Li, Y.J. Guo, P.C. Ma, Y.L. Chen, X.H. Zhang, K. Zhang, R.F. Zhang, Met. Mater. Int. 29, 1652–1668 (2023). https://doi.org/10.1007/s12540-022-01319-0

    Article  CAS  Google Scholar 

  59. X.F. Ding, F.Q. Zhao, Y.H. Shuang, L.F. Ma, Z.B. Chu, C.J. Zhao, J. Mater. Process. Technol. 276, 116325 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116325

    Article  CAS  Google Scholar 

  60. J.H. Zhao, Y.L. Deng, F.S. Xu, J. Zhang, Metals 9, 110 (2019). https://doi.org/10.3390/met9020110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52305373), Jiangxi Provincial Natural Science Foundation (Grant No. 20232BAB214053), Science and Technology Major Project of Jiangxi, China (Grant No. 20194ABC28001), and PhD Starting Foundation of Nanchang Hangkong University (No. 2030009401101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Huang or Zhenghua Guo.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Li, C., Jiang, L. et al. Hot Workability of a Typical Ultrahigh Strength Steel During the Isothermal Forging Process. Met. Mater. Int. 30, 1055–1071 (2024). https://doi.org/10.1007/s12540-023-01560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01560-1

Keywords

Navigation