Skip to main content
Log in

Influence of Plastic Anisotropy and Strain path on strain-induced Phase Transformation of Cobalt

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The objective of this paper is to contribute to a better understanding of the deformation mechanisms of a rolled polycrystalline cobalt sheet. In order to achieve this goal, a particular attention is given to the strain-induced phase transformation and the forming parameters on which it may depend such as the plastic anisotropy or the loading path. In situ phase quantification by X-ray diffraction during tensile tests, on samples cut out from a cold rolled sheet material in three different directions (at 0°, 45° and 90° from the rolling direction), has enabled to study the influence of plastic anisotropy on the strain-induced phase transformation of metastable retained Face Centered Cubic phase to Hexagonal Close Packed phase. Results show that the martensitic phase transformation can be activated by basal slip in the first stage of plasticity but it also indicates that the latter is delayed when sample is strained in tension for an angle of 45° to the rolling direction. Post mortem analyses on a stamped sample by the Nakazima test have revealed that the phase transformation continues for higher strain levels. A particular interest is paid to the coupling between strain-hardening mechanisms and phase transformation and is discussed given the plastic anisotropy of cobalt aggregate.

Graphical Abstract

Evolution of Metastable Cobalt FCC Volume Proportion During Mechanical Loading

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Betteridge, The properties of metallic cobalt. Prog Mater. Sci. 24, 51–142 (1980). https://doi.org/10.1016/0079-6425(79)90004-5

    Article  Google Scholar 

  2. L. Rémy, A. Pineau, B. Thomas, Temperature dependence of stacking fault energy in close-packed metals and alloys. Mater. Sci. Eng. 36, 47–63 (1978). https://doi.org/10.1016/0025-5416(78)90194-5

    Article  Google Scholar 

  3. A. Seeger, Theorie der Kristallplastizität: II. Die Grundstruktur der dichtest gepackten Metalle und ihr Einfluß auf die plastische Verformung. Z. Für Naturforschung A 9, 856–869 (1954). https://doi.org/10.1515/zna-1954-1007

    Article  Google Scholar 

  4. A. Seeger, H. Kronmüller, O. Boser, M. Rapp, Plastische Verformung von Kobalteinkristallen. Phys. Status Solidi B 3, 1107–1125 (1963). https://doi.org/10.1002/pssb.19630030617

    Article  CAS  Google Scholar 

  5. A. Seeger, H. Kronmüller, S. Mader, H. Träuble, Work-hardening of hexagonal close-packed crystals and in the easy glide region of face-centred cubic crystals. Philos. Mag. A 6, 639–655 (1961). https://doi.org/10.1080/14786436108244415

    Article  CAS  Google Scholar 

  6. M. Martinez, G. Fleurier, F. Chmelík, M. Knapek, B. Viguier, E. Hug, TEM analysis of the deformation microstructure of polycrystalline cobalt plastically strained in tension. Mater. Charact. 134, 76–83 (2017). https://doi.org/10.1016/j.matchar.2017.09.038

    Article  CAS  Google Scholar 

  7. M. Martinez, E. Hug, Characterization of deformation twinning in polycrystalline cobalt: a quantitative analysis. Materialia 7, 100420 (2019). https://doi.org/10.1016/j.mtla.2019.100420

    Article  CAS  Google Scholar 

  8. G. Fleurier, E. Hug, M. Martinez, P.-A. Dubos, C. Keller, Size effects and hall–petch relation in polycrystalline cobalt. Philos. Mag. Lett. 95, 122–130 (2015). https://doi.org/10.1080/09500839.2015.1020351

    Article  CAS  Google Scholar 

  9. M. Martinez Celis, P. Minárik, E. Hug, J. Dorenlor, F. Chmelík, M. Knapek, P. Dobroň, Analysis of the twin variant selection in polycrystalline cobalt. J. Mater. Sci. 56, 7740–7752 (2021). https://doi.org/10.1007/s10853-020-05718-9

    Article  CAS  Google Scholar 

  10. Y.T. Zhu, X.Y. Zhang, Q. Liu, Observation of twins in polycrystalline cobalt containing face-center-cubic and hexagonal-close-packed phases. Mater. Sci. Eng. A 528, 8145–8149 (2011). https://doi.org/10.1016/j.msea.2011.07.062

    Article  CAS  Google Scholar 

  11. X.Y. Zhang, Y.T. Zhu, Q. Liu, Deformation twinning in polycrystalline Co during room temperature dynamic plastic deformation. Scr. Mater. 63, 387–390 (2010). https://doi.org/10.1016/j.scriptamat.2010.04.031

    Article  CAS  Google Scholar 

  12. R. Bauer, E.A. Jaegle, W. Baumann, E.J. Mittemeijer, Kinetics of the allotropic hcp-fcc Phase Transformation in Cobalt. Philos. Mag. 91, 437–457 (2010). https://doi.org/10.1080/14786435.2010.525541

    Article  CAS  Google Scholar 

  13. H. Bibring, F. Sebilleau, Structure et transformation allotropique du cobalt. Rev. Métallurgie. 52, 569–578 (1955). https://doi.org/10.1051/metal/195552070569

    Article  CAS  Google Scholar 

  14. J.W. Christian, A theory of the transformation in pure cobalt, Proc. R. Soc. A Math. Phys. Sci. 206, 51–64 (1951). https://doi.org/10.1098/rspa.1951.0055

  15. H.T. Hesemann, P. Müllner, E. Arzt, Stress and texture development during martensitic transformation in cobalt thin films. Scr. Mater. 44, 25–30 (2001). https://doi.org/10.1016/S1359-6462(00)00553-4

    Article  CAS  Google Scholar 

  16. H.T. Hesemann, P. Müllner, O. Kraft, D. Nowak, S.P. Baker, K. Finkelstein, E. Arzt, Texture dependence of the martensitic transformation in cobalt thin films. Scr. Mater. 48, 1129–1133 (2003). https://doi.org/10.1016/S1359-6462(02)00603-6

    Article  CAS  Google Scholar 

  17. R.T. Holt, E. Teghtsoonian, The influence of the allotropic transformation on the deformation behavior of pure cobalt. Metall. Mater. Trans. B 3, 2443–2447 (1972). https://doi.org/10.1007/BF02647047

  18. C.R. Houska, B.L. Averbach, M. Cohen, The cobalt transformation. Acta Metall. 8, 81–87 (1960). https://doi.org/10.1016/0001-6160(60)90088-2

    Article  Google Scholar 

  19. B. Kamel, K. Halim, The Effect of Phase Change on the Mechanical Properties of Cobalt Near its Transformation temperature. Phys. Status Solidi B 15, 63–69 (1966). https://doi.org/10.1002/pssb.19660150104

    Article  CAS  Google Scholar 

  20. H. Matsumoto, Variation in transformation hysteresis in pure cobalt with transformation cycles. J. Alloys Compd. 223, L1–L3 (1995). https://doi.org/10.1016/0925-8388(95)01523-X

  21. H. Matsumoto, Effects of transformation-induced defects in cobalt and Ni48Ti52. Phys. B Condens. Matter. 334, 112–117 (2003). https://doi.org/10.1016/S0921-4526(03)00023-1

    Article  CAS  Google Scholar 

  22. A. Munier, J.E. Bidaux, R. Schaller, C. Esnouf, Evolution of the microstructure of cobalt during diffusionless transformation cycles. J. Mater. Res. 5, 769–775 (1990). https://doi.org/10.1557/JMR.1990.0769

    Article  CAS  Google Scholar 

  23. E.A. Owen, D.M. Jones, Effetct of the grain size on the crystal structure of cobalt. Proc. Phys. Soc. B 67, 456–466 (1954). https://doi.org/10.1088/0370-1301/67/6/302

  24. J.T. Plewes, K.J. Bachmann, The effect of thermomechanical pretreatment on the allotropic transformation in cobalt. Metall. Trans. 4, 1729–1734 (1973). https://doi.org/10.1007/BF02666203

    Article  CAS  Google Scholar 

  25. A.E. Ray, S.R. Smith, J.D. Scofielf, Study of the phase transformation of cobalt. J. Phase Equilibria 12, 644–648 (1991). https://doi.org/10.1007/BF02645161

    Article  CAS  Google Scholar 

  26. F. Sebilleau, H. Bibring, F. Bückle, The kinetics and morphology of the allotropic transformation of cobalt. J. Inst. Met. 87, 71 (1958)

    Google Scholar 

  27. F. Sebilleau, H. Bibring, Structure and allotropic transformation of cobalt. Rev. Métallurgie. 52, 569 (1955)

    Article  Google Scholar 

  28. F. Sebilleau, The allotropic transformation of cobalt. Inst. Met. Monogr. 18, 209–217 (1956)

    Google Scholar 

  29. J. Sort, S. Suriñach, J.S. Muñoz, M.D. Baró, M. Wojcik, E. Jedryka, S. Nadolski, N. Sheludko, J. Nogués, Role of stacking faults in the structural and magnetic properties of ball-milled cobalt. Phys. Rev. B 68, 014421 (2003). https://doi.org/10.1103/PhysRevB.68.014421

    Article  Google Scholar 

  30. X. Wu, N. Tao, Y. Hong, J. Lu, K. Lu, γ → ε martensite transformation and twinning deformation in fcc cobalt during surface mechanical attrition treatment. Scr. Mater. 52, 547–551 (2005). https://doi.org/10.1016/j.scriptamat.2004.12.004

    Article  CAS  Google Scholar 

  31. J.-C. Zhao, M.R. Notis, Kinetics of the fcc to hcp phase transformation and the formation of martensite in pure cobalt. Scr. Metall. Mater. 32, 1671–1676 (1995). https://doi.org/10.1016/0956-716X(95)00253-R

    Article  CAS  Google Scholar 

  32. C.C. Sanderson, Deformation of polycristalline cobalt, Ph.D. Thesis, University of British Columbia (1972)

  33. G. Bouquet, B. Dubois, Influence of the F.C.C. phase retained at room temperature on the mechanical properties of cobalt. Scr. Metall. 12, 1079–1081 (1978). https://doi.org/10.1016/0036-9748(78)90078-9

    Article  CAS  Google Scholar 

  34. L. Habraken, Propriétés du cobalt et de ses alliages (Properties of cobalt and Its alloys) (Tech. Ing., Saint-Denis, 1979). https://doi.org/10.51257/a-v1-m505

  35. R.T. Holt, E. Teghtsoonian, The tensile deformation of cobalt single crystals in the fcc phase. Metall. Mater. Trans. B 3, 1621–1626. https://doi.org/10.1007/BF02643054

  36. A.A. Karimpoor, Mechanical properties of bulk nanocrystalline hexagonal cobalt electrodeposits, Master’s Thesis, University of Toronto (2001)

  37. L.D. Sokolov, A.N. Gladkikh, V.A. Skudnov, V.M. Solenov, Mechanical properties of cobalt at different temperatures and deformation rates. Met. Sci. Heat Treat. 11, 626–628 (1969). https://doi.org/10.1007/BF00652118

    Article  Google Scholar 

  38. A.G. Zhou, D. Brown, S. Vogel, O. Yeheskel, M.W. Barsoum, On the kinking nonlinear elastic deformation of cobalt. Mater. Sci. Eng. A 527, 4664–4673 (2010). https://doi.org/10.1016/j.msea.2010.04.048

    Article  CAS  Google Scholar 

  39. E. Hug, C. Keller, Size effects and magnetoelastic couplings: a link between hall–petch behaviour and coercive field in soft ferromagnetic metals. Philos. Mag. 99, 1297–1326 (2019). https://doi.org/10.1080/14786435.2019.1580397

    Article  CAS  Google Scholar 

  40. E. Hug, C. Keller, P.-A. Dubos, M.M. Celis, Size effects in cobalt plastically strained in tension: impact on gliding and twinning work hardening mechanisms. J. Mater. Res. Technol. 11, 1362–1377 (2021). https://doi.org/10.1016/j.jmrt.2021.01.105

  41. A. Zhou, Kinking nonlinear elastic solids: theory and experiments, Ph.D. Thesis, Drexel University (2008)

  42. V.M. Marx, C. Kirchlechner, B. Breitbach, M.J. Cordill, D.M. Többens, T. Waitz, G. Dehm, Strain-induced phase transformation of a thin Co film on flexible substrates. Acta Mater. 121, 227–233 (2016). https://doi.org/10.1016/j.actamat.2016.09.015

    Article  CAS  Google Scholar 

  43. P.-A. Dubos, J. Fajoui, N. Iskounen, M. Coret, S. Kabra, J. Kelleher, B. Girault, D. Gloaguen, Temperature effect on strain-induced phase transformation of cobalt. Mater. Lett. 281, 128812 (2020). https://doi.org/10.1016/j.matlet.2020.128812

    Article  CAS  Google Scholar 

  44. L. Rémy, A. Pineau, Twinning and strain-induced f.c.c. → h.c.p. transformation on the mechanical properties of Co-Ni-Cr-Mo alloys. Mater. Sci. Eng. 26, 123–132 (1976). https://doi.org/10.1016/0025-5416(76)90234-2

  45. B.B. Straumal, A.A. Mazilkin, B. Baretzky, G. Schütz, E. Rabkin, R.Z. Valiev, Accelerated diffusion and phase transformations in Co–Cu alloys driven by the severe Plastic deformation. Mater. Trans. 53, 63–71 (2012). https://doi.org/10.2320/matertrans.MD201111

    Article  CAS  Google Scholar 

  46. P.-A. Dubos, E. Hug, S. Thibault, M. Ben Bettaieb, C. Keller, Size effects in Thin face-centered cubic Metals for different complex forming loadings. Metall. Mater. Trans. A 44, 5478–5487 (2013). https://doi.org/10.1007/s11661-013-1892-7

    Article  CAS  Google Scholar 

  47. P.A. Dubos, G. Fleurier, E. Hug, An experimental investigation of the size Effects in forming processes of high-purity thin metallic sheets. Mater. Sci. Forum. 879, 459–464 (2017). https://doi.org/10.4028/www.scientific.net/MSF.879.459

    Article  Google Scholar 

  48. P. Vedoya, A. Pochettino, R. Penelle, Plastic anisotropy of Titanium, Zirconium and Zircaloy 4 thin sheets. Texture, Stress Microstruct. 8, 601–610 (1988)

    Article  Google Scholar 

  49. U.F. Kocks, C.N. Tomé, H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Material Properties (Cambridge University Press, Cambridge, 2000)

  50. W.A. Rachinger, A correction for the 1 2Doublet in the measurement of widths of X-ray diffraction lines. J. Sci. Instrum. 25, 254 (1948). https://doi.org/10.1088/0950-7671/25/7/125

    Article  Google Scholar 

  51. M.J. Buerger, The Correction of X-Ray Diffraction Intensities for Lorentz and Polarization Factors. Proc. Natl. Acad. Sci. USA 26, 637–642 (1940). https://doi.org/10.1073/pnas.26.11.637

  52. H.-R. Wenk, S. Matthies, J. Donovan, D. Chateigner, BEARTEX: a Windows-based program system for quantitative texture analysis. J. Appl. Crystallogr. 31, 262–269 (1998). https://doi.org/10.1107/S002188989700811X

    Article  CAS  Google Scholar 

  53. S.L. Shang, W.Y. Wang, Y. Wang, Y. Du, J.X. Zhang, A.D. Patel, Z.K. Liu, Temperature-dependent ideal strength and stacking fault energy of fcc ni: a first-principles study of shear deformation. J. Phys. Condens. Matter. 24, 155402 (2012). https://doi.org/10.1088/0953-8984/24/15/155402

    Article  CAS  Google Scholar 

  54. J.T. Bonarski, M. Wróbel, K. Pawlik, Quantitative phase analysis of duplex stainless steel using incomplete pole figures. Mater. Sci. Technol. 16, 657–662 (2000). https://doi.org/10.1179/026708300101508234

    Article  CAS  Google Scholar 

  55. C.H. MacGillavry, G.D. Rieck, International Tables for X-Ray Crystallography: Volume 3: Physical and Chemical Tables, ed. By K. Lonsdale (Kynoch Press, Birmingham, 1962)

  56. A. Col, Emboutissage des tôles. Importance des modes de déformations (Sheet metal stamping - Importance of deformation modes) (Tech. Ing., Saint-Denis, 2002). https://doi.org/10.51257/a-v1-bm7510

    Article  Google Scholar 

  57. Z. Marciniak, J.L. Duncan, S.J. Hu, in Mechanics of Sheet Metal Forming, 2nd edn. (Butterworth-Heinemann, Oxford, 2002), pp. 1–13

    Google Scholar 

  58. N. Iskounen, P.A. Dubos, J. Fajoui, M. Coret, M.-J. Moya, B. Girault, N. Barrier, N. Bruzy, E. Hug, D. Gloaguen, Experimental investigation of allotropic transformation of cobalt: influence of temperature cycle, mechanical loading and starting microstructure. Metall. Mater. Trans. A 52, 1477–1491 (2021). https://doi.org/10.1007/s11661-021-06142-7

Download references

Acknowledgements

Part of experimental work was performed in the PhD of Nadjib Iskounen (Centrale Nantes 2021) with the support of Marie-José Moya (assistant engineer). The authors would also like to thank Gautier Doumenc and Pascal Paillard (Institut des Matériaux de Nantes Jean Rouxel) for providing access to the EBSD analyses and ENSICAEN for the use of the stamping press.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Antoine Dubos.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubos, PA., Fajoui, J., Girault, B. et al. Influence of Plastic Anisotropy and Strain path on strain-induced Phase Transformation of Cobalt. Met. Mater. Int. 30, 1–12 (2024). https://doi.org/10.1007/s12540-023-01490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01490-y

Keywords

Navigation