Skip to main content
Log in

Bonding Interface Evolution Characteristics of Laser Depositing Ti2AlNb Intermetallic Compound on the Near-α Titanium Alloy Plate

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Gradient titanium alloys are more conducive to meeting the requirements of large temperature and stress gradients than single homogeneous titanium alloy components used only within specific temperature and stress ranges. In this study, the near-α high-temperature titanium alloy and Ti2AlNb intermetallic compound were combined by laser deposition technology to attempt to prepare a gradient titanium alloy that can be used in a broader temperature and stress range. The evolution characteristics of the bonding interface between the two alloys were deeply analyzed. Results show that a good metallurgical bonding interface without defects was formed after laser depositing Ti2AlNb powders on the forged near-α titanium alloy plate. The very narrow heat-affected band (HAB) and fine-grain zone were formed at the bonding interface under different laser parameters, which lead to higher microhardness than that of both sides. The chemical composition homogenization difference within and without the bonding interface should be responsible for the formation of HAB, and the solid-state transformation induced by the complex thermal history of the laser deposition process is also an essential factor. The bonding interface evolution can be generalized as the variation of phase from the substrate to the deposition zone, which is α + β→α + α’+β→β/B2. Directly laser depositing Ti2AlNb powders on the forged near-α titanium alloy plate results in the discontinuous transition of microstructure and property at the bonding interface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, W. Liu, B. Chen, Q. Shen, L. Zhang, E.J. Lavernia, Mater. Sci. Eng. A 764, 138209 (2019). https://doi.org/10.1016/j.msea.2019.138209

    Article  CAS  Google Scholar 

  2. T. Lu, Y. Cui, L. Xue, H. Zhang, C. Liu, J. Mater. Sci. 56, 12438 (2021). https://doi.org/10.1007/s10853-021-06012-y

    Article  CAS  Google Scholar 

  3. H.L. Zhu, Y. Ma, T. Wei, H.J. Li, R. Aughterson, G. Lumpkin, Addit. Manuf. 29, 100766 (2019). https://doi.org/10.1016/j.addma.2019.06.017

    Article  CAS  Google Scholar 

  4. S.Y. Wei, W.M. Shi, D.C. Wang, Q.J. Wang, Z.Y. Chen, J.R. Liu, Chin. J. Nonferrous Met. 20, 801 (2010). https://doi.org/10.19476/j.ysxb.1004.0609.2010.s1.171

    Article  Google Scholar 

  5. Y.H. Zhou, D.W. Wang, L.J. Song, A. Mukhtar, D.N. Huang, C. Yang, M. Yan, Mater. Sci. Eng. A 817, 141352 (2021). https://doi.org/10.1016/j.msea.2021.141352

    Article  CAS  Google Scholar 

  6. A. Reichardt, A.A. Shapiro, R. Otis, R.P. Dillon, J.P. Borgonia, B.W. McEnerney, P. Hosemann, A.M. Beese, Int. Mater. Rev. 66, 1 (2021). https://doi.org/10.1080/09506608.2019.1709354

    Article  CAS  Google Scholar 

  7. T. Zhang, Z. Huang, T. Yang, H. Kong, J. Luan, A. Wang, D. Wang, W. Kuo, Y. Wang, C.T. Liu, Science 374, 478 (2021). https://doi.org/10.1126/science.abj3770

    Article  CAS  Google Scholar 

  8. Y. Liu, C. Liang, W. Liu, Y. Ma, C. Liu, C. Zhang, J. Alloys Compd. 763, 376 (2018). https://doi.org/10.1016/j.jallcom.2018.05.289

    Article  CAS  Google Scholar 

  9. J. Cao, X.Y. Dai, J.Q. Liu, X.Q. Si, J.C. Feng, Mater. Des. 121, 176 (2017). https://doi.org/10.1016/j.matdes.2017.02.067

    Article  CAS  Google Scholar 

  10. M. Holmquist, V. Recina, B. Pettersson, Acta Mater. 47, 1791 (1999). https://doi.org/10.1016/S1359-6454(99)00051-8

    Article  CAS  Google Scholar 

  11. D.K.Q. Mu, Z. Zhang, Y.H. Xie, J.M. Liang, J. Wang, D.L. Zhang, Mater. Charact. 175, 111090 (2021). https://doi.org/10.1016/j.matchar.2021.111090

    Article  CAS  Google Scholar 

  12. M.L. Su, X.Y. Qi, L.Y. Xu, Q. Feng, Y.D. Han, J. Mater. Sci. 57, 15078 (2022). https://doi.org/10.1007/S10853-022-07541-W

    Article  CAS  Google Scholar 

  13. O. Dolev, S. Osovski, A. Shirizly, Addit. Manuf. 37, 101657 (2021). https://doi.org/10.1016/j.addma.2020.101657

    Article  CAS  Google Scholar 

  14. J. Song, Q. Deng, C. Chen, D. Hu, Y. Li, Appl. Surf. Sci. 252, 7934 (2006). https://doi.org/10.1016/j.apsusc.2005.10.025

    Article  CAS  Google Scholar 

  15. Y.J. Liang, X.J. Tian, Y.Y. Zhu, J. Li, H.M. Wang, Mater. Sci. Eng. A 599, 242 (2014). https://doi.org/10.1016/j.msea.2014.01.092

    Article  CAS  Google Scholar 

  16. J. Zhou, H. Li, Y. Yu, K. Firouzian, Y. Qian, F. Lin, J. Alloys Compd. 832, 154774 (2020). https://doi.org/10.1016/j.jallcom.2020.154774

    Article  CAS  Google Scholar 

  17. H.X. Chen, Z.Y. Liu, X. Cheng, Y. Zou, J. Alloys Compd. 875, 159946 (2021). https://doi.org/10.1016/j.jallcom.2021.159946

    Article  CAS  Google Scholar 

  18. Y. Wu, X. Cheng, S. Zhang, D. Liu, H. Wang, Intermetallics 106, 26 (2019). https://doi.org/10.1016/j.intermet.2018.12.008

    Article  CAS  Google Scholar 

  19. Y.Z. Zhang, Y.T. Liu, X.H. Zhao, Y.J. Tang, Mater. Des. 110, 571 (2016). https://doi.org/10.1016/j.matdes.2016.08.012

    Article  CAS  Google Scholar 

  20. Y.T. Liu, Y.Z. Zhang, Mater. Sci. Eng. A 795, 140019 (2020). https://doi.org/10.1016/j.msea.2020.140019

    Article  CAS  Google Scholar 

  21. Y.T. Liu, Y.Z. Zhang, Y.Q. Chen, Y.J. Tang, J. Aeronaut. Mater. 37, 61 (2017). https://doi.org/10.11868/j.issn.1005-5053.2016.00052

    Article  CAS  Google Scholar 

  22. B. He, Y.T. Lin, G. Yang, Q.J. Zhou, X.M. Wang, IOP Conf. Ser.: Mater. Sci. Eng. 1081, 012020 (2021). https://doi.org/10.1088/1757-899X/1081/1/012020

  23. B. He, D. Wu, J. Pan, G. Yang, Vacuum 190, 110309 (2021). https://doi.org/10.1016/j.vacuum.2021.110309

    Article  CAS  Google Scholar 

  24. H. Tan, Z. Mi, Y. Zhu, Z. Yan, X. Hou, J. Chen, Materials 13, 552 (2020). https://doi.org/10.3390/ma13030552

    Article  CAS  Google Scholar 

  25. M.C. Yang, MSc Dissertation, Northwestern Polytechnical University (2009), pp. 23–55

  26. S.M. Kelly, S.L. Kampe, Metall. Mater. Trans. A 35, 1861 (2004). https://doi.org/10.1007/s11661-004-0094-8

    Article  Google Scholar 

  27. P.A. Kobryn, E.H. Moore, S.L. Semiatin, Scr. Mater. 43, 299 (2000). https://doi.org/10.1016/S1359-6462(00)00408-5

    Article  CAS  Google Scholar 

  28. Y.Y. Zhu, X.J. Tian, J. Li, H.M. Wang, J. Alloys Compd. 616, 468 (2014). https://doi.org/10.1016/j.jallcom.2014.07.161

    Article  CAS  Google Scholar 

  29. C.M. Liu, H.M. Wang, X.J. Tian, H.B. Tang, D. Liu, Mater. Sci. Eng. A 586, 323 (2013). https://doi.org/10.1016/j.jallcom.2013.03.243

    Article  CAS  Google Scholar 

  30. J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984). https://doi.org/10.1016/0025-5416(84)90201-5

    Article  CAS  Google Scholar 

  31. M.J. Bermingham, D.H. StJohn, J. Krynen, S.T. Jones, M.S. Dargusch, Acta Mater. 168, 261 (2019). https://doi.org/10.1016/j.actamat.2019.02.020

    Article  CAS  Google Scholar 

  32. M. Bambach, I. Sizova, B. Sydow, S. Hemes, F. Meiners, J. Mater. Process. Tech. 282, 116689 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116689

    Article  CAS  Google Scholar 

  33. N. Sridharan, Y. Chen, P. Nandwana, R.M. Ulfig, D.J. Larson, S.S. Babu, J. Mater. Sci. 55, 1715 (2020). https://doi.org/10.1007/s10853-019-03984-w

    Article  CAS  Google Scholar 

  34. Z.B. Zhao, Q.J. Wang, J.R. Liu, R. Yang, Acta Mater. 131, 305 (2017). https://doi.org/10.1016/j.actamat.2017.04.007

    Article  CAS  Google Scholar 

  35. S. Balachandran, A. Kashiwar, A. Choudhury, D. Banerjee, R. Shi, Y. Wang, Acta Mater. 106, 374 (2016). https://doi.org/10.1016/j.actamat.2016.01.023

    Article  CAS  Google Scholar 

  36. J. Ma, Y. Zhang, J. Li, D. Cui, J. Wang, Mater. Sci. Eng. A 811, 140984 (2021). https://doi.org/10.1016/j.msea.2021.140984

    Article  CAS  Google Scholar 

  37. Y. Zhu, X. Tian, J. Li, H. Wang, J. Alloys Compd. 616, 468 (2014). https://doi.org/10.1016/j.jallcom.2014.07.161

    Article  CAS  Google Scholar 

  38. C.M. Liu, X.J. Tian, H.B. Tang, H.M. Wang, J. Alloys Compd. 572, 17 (2013). https://doi.org/10.1016/j.jallcom.2013.03.243

    Article  CAS  Google Scholar 

  39. W. Guo, R. Sun, B. Song, Y. Zhu, F. Li, Z. Che, B. Li, C. Guo, L. Liu, P. Peng, Surf. Coat. Tech. 349, 503 (2018). https://doi.org/10.1016/j.surfcoat.2018.06.020

    Article  CAS  Google Scholar 

  40. B. Dhakal, S. Swaroop, J. Mater. Process. Tech. 282, 116640 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116640

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51974259), the Xi’an Municipal Bureau of Science and Technology (No. 21ZCZZHXJS-QCY6-0008), Foundation of Equipment Pre-Research Area (No. 80923010402) and Industry-Academic Cooperation Project of Aero Engine Corporation of China (No. HFZL2020CXY021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. L. Zhao or H. O. Yang.

Ethics declarations

Statements and Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Zhao, Z.L., Liu, Y.L. et al. Bonding Interface Evolution Characteristics of Laser Depositing Ti2AlNb Intermetallic Compound on the Near-α Titanium Alloy Plate. Met. Mater. Int. 29, 2795–2806 (2023). https://doi.org/10.1007/s12540-023-01422-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01422-w

Keywords

Navigation