Skip to main content
Log in

Microstructure and Properties of a Low Carbon Bainitic Steel Produced by Conventional and Inverted Two-Step Austempering Processes

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The microstructure evolution and strain hardening behaviour of a low-carbon carbide-free bainitic steel prepared by either single-step austempering (420 °C or 365 °C), conventional two-step austempering (420 °C then 365 °C) or inverted two-step austempering (365 °C then 420 °C) treatments were investigated. The results show that when the total isothermal holding time was the same, the inverted two-step austempering treatment (first completing bainitic transformation at low-temperature and then annealing at high-temperature austempering) led to the highest toughness (30.7 GPa%) due to the finer bainitic microstructure and higher fraction of film-like retained austenite. Grain refinement and transformation-induced plasticity allowed the material to achieve high ductility without sacrificing strength. Comparing single-step austempering at 365 °C with the inverted two-step austempering process indicates that annealing at a higher temperature after completion of the bainitic transformation resulted in better tensile properties because of a lower dislocation density and more stabler retained austenite. In addition, the samples heat-treated by the conventional two-step austempering process exhibited slower bainite transformation kinetics and the worse tensile properties than the sample which was heat-treated using a single-step austempering treatment at 365 °C or the one which was heat-treated using an inverted two-step heat treatment. Through the analysis of the orientation relationships, it is observed that the original austenite and the bainitic plates mainly followed the K-S orientation relationships regardless of whether the bainite plates were formed in the first or the second heat-treatment step.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol. 18, 279 (2002)

    Article  CAS  Google Scholar 

  2. C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43, 1821 (2003)

    Google Scholar 

  3. M.N. Yoozbashi, S. Yazdani, T.S. Wang, Mater. Design 32, 3248 (2011)

    Article  CAS  Google Scholar 

  4. F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8, 251 (2004)

    Article  CAS  Google Scholar 

  5. H. Mousalou, S. Yazdani, B. Avishan, N.P. Ahmadi, A. Chabok, Y. Pei, Mater. Sci. Eng. A 734, 329 (2018)

    Article  CAS  Google Scholar 

  6. A. Navarro-López, J. Hidalgo, J. Sietsma, M.J. Santofimia, Mater. Design 188, 108484 (2020)

    Article  Google Scholar 

  7. L.J. Zhao, L.H. Qian, Q. Zhou, D.D. Li, T.L. Wang, Z.G. Jia, F.C. Zhang, J.Y. Meng, Mater. Design 183, 108123 (2019)

    Article  CAS  Google Scholar 

  8. A. Navarro-López, J. Sietsma, M.J. Santofimia, Metall. Mater. Trans. A 47, 1028 (2016)

    Article  Google Scholar 

  9. S. Samanta, P. Biswas, S. Giri, S.B. Singh, S. Kundu, Acta Mater. 105, 390 (2016)

    Article  CAS  Google Scholar 

  10. S. Samanta, P. Biswas, S.B. Singh, Scripta Mater. 136, 132 (2017)

    Article  CAS  Google Scholar 

  11. J.A. Da Cruz Jr, D.B. Santos, J. Mater. Res. Technol. 2, 93 (2013)

    Article  Google Scholar 

  12. W. Gong, Y. Tomota, S. Harjo, Y.H. Su, K. Aizawa, Acta Mater. 85, 243 (2015)

    Article  CAS  Google Scholar 

  13. H.J. Hu, H.S. Zurob, G. Xu, D. Embury, G.R. Purdy, Mater. Sci. Eng. A 626, 34 (2015)

    Article  CAS  Google Scholar 

  14. H.J. Hu, G. Xu, L. Wang, M.X. Zhou, Z.L. Xue, Met. Mater. Int. 21, 929 (2015)

    Article  CAS  Google Scholar 

  15. H. Guo, Y.P. Fan, Z.X. Li, Q. Li, X.Y. Feng, J. Mater. Res. Technol. 11, 982 (2021)

    Article  Google Scholar 

  16. W. Gong, Y. Tomota, M.S. Koo, Y. Adachi, Scripta Mater. 63, 819 (2010)

    Article  CAS  Google Scholar 

  17. S. Golchin, B. Avishan, S. Yazdani, Mater. Sci. Eng. A 656, 94 (2016)

    Article  CAS  Google Scholar 

  18. J.Y. Tian, G.H. Chen, Y.W. Xu, Z.Y. Jiang, G. Xu, Metall. Mater. Trans. A 50, 4541 (2019)

    Article  CAS  Google Scholar 

  19. H. Guo, X.F. Feng, A.M. Zhao, Q. Li, M.J. Chai, J. Mater. Res. Technol. 9, 1593 (2020)

    Article  CAS  Google Scholar 

  20. X.L. Wang, K.M. Wu, F. Hu, L. Yu, X.L. Wan, Scripta Mater. 74, 56 (2014)

    Article  CAS  Google Scholar 

  21. K.-W. Kim, K. Kim, C.-H. Lee, J.-Y. Kang, T.-H. Lee, K.-M. Cho, K.H. Oh, Mater. Sci. Eng. A 673, 557 (2016)

    Article  CAS  Google Scholar 

  22. B. Avishana, M. Tavakolian, S. Yazdani, Mater. Sci. Eng. A 693, 178 (2017)

    Article  Google Scholar 

  23. J.Y. Tian, G. Xu, Z.Y. Jiang, M.X. Zhou, H.J. Hu, Q. Yuan, ISIJ Int. 58, 1875 (2018)

    Article  CAS  Google Scholar 

  24. C. García-Mateo, F.G. Caballero, Mater. Trans. 46, 1839 (2005)

    Article  Google Scholar 

  25. G.H. Gao, H.R. Guo, X.L. Gui, Z.L. Tan, B.Z. Bai, Mater. Sci. Eng. A 736, 298 (2018)

    Article  CAS  Google Scholar 

  26. Z.N. Yang, C.H. Chu, F. Jiang, Y.M. Qin, X.Y. Long, S.L. Wang, D. Chen, F.C. Zhang, Mater. Sci. Eng. A 748, 16 (2019)

    Article  CAS  Google Scholar 

  27. D.Y. Sun, H.Q. Zhao, L.L. You, X.Y. Long, Z.N. Yang, Y.G. Li, F. Liu, F.C. Zhang, Mater. Sci. Eng. A 845, 143212 (2022)

    Article  CAS  Google Scholar 

  28. J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, Z.L. Xue, J. Iron Steel Res. Int. 26, 846 (2019)

    Article  CAS  Google Scholar 

  29. H. Guo, X. Feng, A. Zhao, Q. Li, M. Chai, J. Mater. Res. Technol. 9, 1593 (2020)

    Article  Google Scholar 

  30. K. Yamamoto, M. Takahashi, Y. Kamikubo, Y. Sugiura, S. Iwasawa, T. Nakata, S. Kamado, J. Alloy. Compd. 834, 155133 (2020)

  31. J.Y. Tian, H.X. Wang, M. Zhu, M.X. Zhou, Q. Zhang, X. Su, A.M. Guo, G. Xu, Mater. Sci. Eng. A 834, 142622 (2022)

  32. D.F. Liu, J. Qin, Y.H. Zhang, Z.G. Wang, J.C. Nie, Mater. Sci. Eng. A 797, 140238 (2020)

    Article  CAS  Google Scholar 

  33. C. Garcia-Mateo, J.A. Jimenez, B. Lopez-Ezquerra, R. Rementeria, L. Morales-Rivas, M. Kuntz, F.G. Caballero, Mater. Charact. 122, 83 (2016)

    Article  CAS  Google Scholar 

  34. L.C. Chang, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 11, 874 (1995)

    Article  CAS  Google Scholar 

  35. J.Y. Tian, G. Xu, Z.Y. Jiang, X.L. Wan, H.J. Hu, Q. Yuan, Steel Res. Int. 90, 1800474 (2019)

    Article  Google Scholar 

  36. D. Schino, J.M. Kenny, Mater. Lett. 57, 1830 (2003)

    Article  Google Scholar 

  37. Y. Wang, K. Zhang, Z. Guo, N. Chen, Y. Rong, Mater. Sci. Eng. A 552, 288 (2012)

    Article  CAS  Google Scholar 

  38. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  CAS  Google Scholar 

  39. B. Zhang, M.M. Zhao, Y. Dong, R.D.K. Misra, Y. Du, H.Y. Wu, L.X. Du, Mater. Sci. Eng. A 821, 141594 (2021)

    Article  CAS  Google Scholar 

  40. M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, J.Y. Tian, Met. Mater. Int. 24, 28 (2018)

    Article  Google Scholar 

  41. J.Y. Tian, G. Xu, Z.Y. Jiang, H.J. Hu, Q. Yuan, X.L. Wan, Met. Mater. Int. 26, 961 (2020)

    Article  CAS  Google Scholar 

  42. C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, Y.B. Chen, Mater. Sci. Eng. A 731, 173 (2018)

    Article  CAS  Google Scholar 

  43. X.Y. Zhang, H. Yu, Q.C. Li, C.H. Song, S.F. Yang, Mater. Sci. Eng. A 840, 142968 (2022)

    Article  CAS  Google Scholar 

  44. H.S. Hasan, M.J. Peet, M.-N. Avettand-Fènoël, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 615, 340 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the Natural Science and Engineering Research Council of Canada and China Scholarship Fund, National Nature Science Foundation of China (Nos. 52104381 & 52004192), Nature Science Foundation of Hubei (No. 2021CFB127) and China Postdoctoral Science Foundation (No. 2021M702539). Electron microscopy was carried out at the Canadian Centre for Electron Microscopy (CCEM), a national facility supported by NSERC, the Canada Foundation for Innovation, under the MSI program, and McMaster University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Guang Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Wang, W., Xu, G. et al. Microstructure and Properties of a Low Carbon Bainitic Steel Produced by Conventional and Inverted Two-Step Austempering Processes. Met. Mater. Int. 29, 1298–1310 (2023). https://doi.org/10.1007/s12540-022-01316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01316-3

Keywords

Navigation