Skip to main content
Log in

Role of Effective Strain During Cold Rolling Deformation on Mechanical Characteristics of AISI 304 Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The plastic cold rolling deformation is one method to enhance the microstructure and mechanical characteristics of austenitic steel. The role of effective strain \(\left( \varepsilon \right)\) during cold rolling deformation of the AISI 304 austenitic stainless steel has been studied. The results of the research were collected based on the means of optical, field emission-scanning electron microscopy, X-ray diffraction, microhardness, and tensile stress–strain tests. After 80% of ε, the size of coarse grains of the austenitic phase \((\gamma_{FCC} )\) was diminished as well as larger domains were generated from the martensitic phase \(\left( {\alpha^{\prime}_{BCC} } \right)\). Also, the large carbide particles (M23C6) have been fragmented and they were sprinkled in both phases during the cold rolling process. Therefore, the dislocation density (ρ) has augmented for the deformed alloys. Consequently, the hardness and the ultimate strength (UTS) values are improved to ≈ 150% and ≈ 200%, respectively with increasing the effective strain to 80%. Generally, the increase of the effective strain leads to diminished grain size and increased the values of hardness, yield stress (YS) and UTS of the samples, meanwhile it causes the decrease of their ductility. Moreover, the values of YS have been calculated based on Hall–Petch, Orowan equations and dislocation strengthening formula. Finally, the calculated and the measured results were compared, where both of them are very matching especially at lower values of effective strain.

Graphic Abstract

SEM micrographs of AISI 304 steel samples (a) So, (b) S2, (c) S4 and (d) S5 that were subjected to different percent of plastic deformation during the cold rolling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels. Mater. Sci. Eng. R 65, 39–104 (2009). https://doi.org/10.1016/j.mser.2009.03.001

    Article  CAS  Google Scholar 

  2. M.F. McGuire, Stainless Steels for Design Engineers (ASM International, 2008). https://www.asminternational.org/search/-/journal_content/56/10192/05231G/PUBLICATION

  3. G.M. de Bellefon, J.C. van Duysen, Tailoring plasticity of austenitic stainless steels for nuclear applications: review of mechanisms controlling plasticity of austenitic steels below 400 °C. J. Nucl. Mater. 475, 168–191 (2016). https://doi.org/10.1016/j.jnucmat.2016.04.015

    Article  CAS  Google Scholar 

  4. C. Zheng, C. Liu, M. Ren, H. Jiang, L. Li, Microstructure and mechanical behavior of an AISI 304 austenitic stainless steel prepared by cold- or cryogenic-rolling and annealing. Mater. Sci. Eng. A 724, 260–268 (2018). https://doi.org/10.1016/j.msea.2018.03.105

    Article  CAS  Google Scholar 

  5. J. Lia, Y. Wang, X. Chen, X. Yan, L. Xiang, Microstructure evolution in stress relaxation behavior of austenite AISI 304 stainless steel spring. Mater. Charact. 148, 266–271 (2019). https://doi.org/10.1016/j.matchar.2018.12.026

    Article  CAS  Google Scholar 

  6. M. Shaban Ghazani, B. Eghbali, Characterization of the hot deformation microstructure of AISI 321 austenitic stainless steel. Mater. Sci. Eng. A 730, 380–390 (2018). https://doi.org/10.1016/j.msea.2018.06.025

    Article  CAS  Google Scholar 

  7. K.-L. Agnieszka, O. Wojciech, R. Wiktoria, K. Joanna, Analysis of deformation texture in AISI 304 steel sheets. Solid State Phenom. 203–204, 105–110 (2013). https://doi.org/10.4028/www.scientific.net/SSP.203-204.105

    Article  CAS  Google Scholar 

  8. Y. Lu, B. Hutchinson, D.A. Molodov, G. Gottstein, Effect of deformation and annealing on the formation and reversion of ε-martensite in Fe–Mn–C alloy. Acta Mater. 58, 3079–3090 (2010). https://doi.org/10.1016/j.actamat.2010.01.045

    Article  CAS  Google Scholar 

  9. A. Hedayati, A. Najafizadeh, A. Kermanpur, F. Forouzan, The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel. J. Mater. Process. Technol. 210, 1017–1022 (2010). https://doi.org/10.1016/j.jmatprotec.2010.02.010

    Article  CAS  Google Scholar 

  10. D.G. Rodrigues, G.G.B. Maria, N.A.L. Viana, D.B. Santos, Effect of low cold-rolling strain on microstructure, texture, phase transformation, and mechanical properties of 2304 lean duplex stainless steel. Mater. Charact. 150, 138–149 (2019). https://doi.org/10.1016/j.matchar.2019.02.011

    Article  CAS  Google Scholar 

  11. J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe et al., Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe–25Mn–3Al–3Si TWIP-TRIP steel. Mater. Sci. Eng. A 711, 78–92 (2018). https://doi.org/10.1016/j.msea.2017.11.017

    Article  CAS  Google Scholar 

  12. B.C. De Cooman, Y. Estrin, S.K. Kim, Twinning-induced plasticity (TWIP) steels. Acta Mater. 142, 283–362 (2018). https://doi.org/10.1016/j.actamat.2017.06.046

    Article  CAS  Google Scholar 

  13. G. Sun, L. Du, J. Hu, B. Zhang, R.D.K. Misra, On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel. Mater. Sci. Eng. A 746, 341–355 (2019). https://doi.org/10.1016/j.msea.2019.01.020

    Article  CAS  Google Scholar 

  14. L.F. Francis, B.J.H. Stadler, C.C. Roberts, Materials Processing, A Unified Approach to Processing of Metals, Ceramics, and Polymers (Academic Press is an imprint of Elsevier 125, London Wall, EC2Y 5AS., Contract No. DE-AC04-94AL85000). ISBN: 978-0-12-385132-1

  15. T. Angel, Formation of martensite in austenitic stainless steels. J. Iron Steel Inst. 177, 165–174 (1954)

    CAS  Google Scholar 

  16. R.E. Schramm, R.P. Reed, Stacking fault energies of seven commercial austenitic stainless steels. Metall. Trans. 6A, 1345–1351 (1975)

    Article  CAS  Google Scholar 

  17. K. Mao, H. Wang, W. Yaqiao, V. Tomar, J.P. Wharry, Microstructure property relationship for AISI 304/308L stainless steel laser weldment. Mater. Sci. Eng. A 721, 234–243 (2018). https://doi.org/10.1016/j.msea.2018.02.092

    Article  CAS  Google Scholar 

  18. H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 61, 2769–2782 (2013). https://doi.org/10.1016/j.actamat.2012.09.036

    Article  CAS  Google Scholar 

  19. R. Chen, P. Guo, Z. Zheng, J. Li, F. Feng, Dislocation based flow stress model of 300M steel in isothermal compression process. Materials 11, 972 (2018). https://doi.org/10.3390/ma11060972

    Article  CAS  Google Scholar 

  20. H. Essoussi, S. Elmouhri, S. Ettaqi, E. Essadiqi, Heat treatment effect on mechanical properties of AISI 304 austenitic stainless steel. Procedia Manuf. 32, 883–888 (2019). The 12th international conference interdisciplinarity in engineering

    Article  Google Scholar 

  21. E.A. Eid, A.M. Deghady, A.N. Fouda, Enhanced microstructural, thermal and tensile characteristics of heat-treated Sn–5.0Sb–0.3Cu (SSC-503) Pb-free solder alloy under high pressure. Mater. Sci. Eng. A 743, 726–732 (2019). https://doi.org/10.1016/j.msea.2018.11.137

    Article  CAS  Google Scholar 

  22. E.A. Eid, A.B. El-Basaty, A.M. Deghady, S. Kaytbay, A. Nassar, Influence of nano-metric Al2O3 particles addition on thermal behavior, microstructural and tensile characteristics of hypoeutectic Sn–5.0Zn–0.3Cu Pb-free solder alloy. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-00726-1

    Article  Google Scholar 

  23. G.E. Dieter, Mechanical Metallurgy, SI Metric Edition (McGraw-Hill Company, New York, 1988), p. 288

    Google Scholar 

  24. B. Ravi Kumar, D. Raabe, Tensile deformation characteristics of bulk ultrafine-grained austenitic stainless steel produced by thermal cycling. Scr. Mater. 66, 634–637 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.052

    Article  CAS  Google Scholar 

  25. Q. Duan, H. Pan, F. Bin, J. Yan, An investigation on the strengthening mechanism based on grain-boundary misorientation of high-strength pipeline steel. Steel Res. Int. 2019, 1900317 (2019). https://doi.org/10.1002/srin.201900317

    Article  CAS  Google Scholar 

Download references

Funding

This study is not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Eid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eid, E.A., Sadawy, M.M. Role of Effective Strain During Cold Rolling Deformation on Mechanical Characteristics of AISI 304 Steel. Met. Mater. Int. 27, 4536–4549 (2021). https://doi.org/10.1007/s12540-020-00722-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00722-9

Keywords

Navigation