Skip to main content
Log in

Elucidating the Effects of Cu and Hot-Extrusion on Tensile Properties of Al–AlSb In Situ Composite

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The microstructures, hardness and tensile properties of Al–AlSb-xCu in situ composites have been studied where the amount of Sb was 10 wt% and Cu contents were 1, 3, 5, 7 and 10 wt% Cu. Microstructural studies indicated that depending Cu content, the crystals of primary AlSb alter seriously in shape and size, and also a new Cu-intermetallic (Al2Cu) is formed in the as-cast microstructure. Although T6 heat treatment did not affect primary AlSb phase, extrusion process refined it through fragmentation mechanism. A uniform microstructure including well distributed fine primary AlSb particles was found by adding 5 wt% Cu to the Al–AlSb composite, as an optimum content. The variation of hardness results with Cu addition showed an increasing trend, while tensile testing examinations revealed that by exceeding Cu content (> 5 wt%), the ultimate tensile strength (UTS) of the composites is reduced in both as-cast and T6 states. The effect of heat treatment on elongation improvement of the extruded composite was positive; however, it was reverse in as-cast condition, since extruded specimens showed a better response to removing the CuAl2 phase in the eutectic region during heat treatment. Remarkable enhancement in the UTS and elongation values of the extruded specimens, before and after heat treatment, was attributed to the extensive fragmentation of intermetallic phases and well distributed fine particles in the matrix which provided proper obstacles for dislocation motion. The fracture behavior of intermetallics in as-cast specimens showed more cleavage fracture in comparison with extruded and heat treated composites which demonstrated more dimples.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Joseph Davis, Aluminum and Aluminum Alloys (ASM International, Cleveland, 1993)

    Google Scholar 

  2. M.O. Bodunrin, K.K. Alaneme, L.H. Chown, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Sci. Technol. 4, 434–445 (2015)

    CAS  Google Scholar 

  3. Q. Qin, W. Li, The formation and characterization of the primary Mg2Si dendritic phase in hypereutectic Al–Mg2Si alloys. Mater. Trans. 57, 85–90 (2016)

    Article  CAS  Google Scholar 

  4. S. Selvakumar, I. Dinaharan, R. Palanivel, B.G. Babu, Development of stainless steel particulate reinforced AA6082 aluminum matrix composites with enhanced ductility using friction stir processing. Mater. Sci. Eng. A 685, 317–326 (2017)

    Article  CAS  Google Scholar 

  5. J. Selvam, D. Raja, I. Dinaharan, In-situ formation of ZrB2 particulates and their influence on microstructure and tensile behavior of AA7075 aluminum matrix composites. Eng. Sci. Technol. Int. J. 20(1), 187–196 (2017)

    Google Scholar 

  6. U. Pandey, R. Purohit, P. Agarwal, S.K. Dhakad, R.S. Rana, Effect of TiC particles on the mechanical properties of aluminium alloy metal matrix composites (MMCs). Mater. Today Proc. 4(4), 5452–5460 (2017)

    Article  Google Scholar 

  7. M.T. Alam, A.H. Ansari, S. Arif, M.N. Alam, Mechanical properties and morphology of aluminium metal matrix nanocomposites-stir cast products. Adv. Mater. Process. Technol. 3(4), 600–615 (2017)

    Google Scholar 

  8. N. Gangil, A.N. Siddiquee, S. Maheshwari, Aluminium based in situ composite fabrication through friction stir processing: a review. J. Alloys Compd. 715, 91–104 (2017)

    Article  CAS  Google Scholar 

  9. R.C. Sharma, M. Srivastava, Phase equilibria calculations of Al–Sb, Al–Ga and Al–Ga–Sb systems. Calphad 16(4), 387–408 (1992)

    Article  CAS  Google Scholar 

  10. Y. Wang, Z. Zhang, S. Zheng, X. Bian, TEM observations of a rapidly solidified Al-20 Sb alloy. J. Alloys Compd. 370(1), 159–163 (2004)

    Article  CAS  Google Scholar 

  11. M. Paliwal, J. In-Ho, Thermodynamic modeling of the Al–Bi, Al–Sb, Mg-Al-Bi and Mg–Al–Sb systems. Calphad 34(1), 51–63 (2010)

    Article  CAS  Google Scholar 

  12. Ü. Cöcen, K. Önel, Ductility and strength of extruded SiCp/aluminium-alloy composites. Compos. Sci. Technol 62, 275–282 (2002)

    Article  Google Scholar 

  13. R. Rahmani Fard, F. Akhlaghi, Effect of extrusion temperature on the microstructure and porosity of A356-SiCp composites. J. Mater. Process. Technol. 187–188, 433–436 (2007)

    Article  Google Scholar 

  14. A. Bahrami, A. Razaghian, M. Emamy, H.R. Jafari, G.S. Mousavi, Microstructure and tensile properties of Al-15 wt% Mg2Si composite after hot extrusion and heat treatment. Key Eng. Mater. 47, 1171–1176 (2011)

    Article  Google Scholar 

  15. A. Montajbnia, B. Pourbahai, M. Emamy, The microstructure and tensile properties of a newly developed Mg–Al/Mg3Sb2 in situ composite in as-cast and extruded conditions. Met. Mater. Int. 24, 1099–1111 (2018)

    Article  Google Scholar 

  16. M. Emamy, A.B. Eradi-Zare, K. Tavighi, B. Pourbahari, Improvement in tensile and wear properties of as-cast Al–15% Mg2Si composite modified by Zn and Ni. Int. J. Metalcasting 11(4), 790–801 (2017)

    Article  Google Scholar 

  17. M. Emamy, M. Oliayee, K. Tavighi, Microstructures and tensile properties of Al/2024–Al 4 Sr composite after hot extrusion and T6 heat treatment. Mater. Sci. Eng. A 625, 303–310 (2015)

    Article  CAS  Google Scholar 

  18. Q.D. Qin, Y.G. Zhao, C. Liu, P.J. Cong, W. Zhou, Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite. J. Alloys Compd. 454, 142–146 (2007)

    Article  Google Scholar 

  19. S. Wang, C. Fan, Crystal structures of Al2Cu revisited: understanding existing phases and exploring other potential phases. Metals 9, 1037 (2019)

    Article  CAS  Google Scholar 

  20. J.L. Murray, The aluminium-copper system. Int. Met. Rev. 30, 211–233 (1985)

    Article  CAS  Google Scholar 

  21. D. Minić, M. Premović, V. Ćosović, D. Manasijević, D. Zivković, A. Kostov, N. Talijan, Experimental investigation and thermodynamic calculations of the Al–Cu–Sb phase diagram. J Alloys Compd. 555, 347–356 (2013)

    Article  Google Scholar 

  22. C. Girard, J.M. Miane, J. Riou, R. Baret, J.P. Bros, Enthalpy of formation of Al–Sb and Al–Ga–Sb liquid alloys. J. Less Common Met. 128, 101–115 (1987)

    Article  CAS  Google Scholar 

  23. M. Emamy, A.R. Emami, K. Tavighi, The effect of Cu addition and solution heat treatment on the microstructure, hardness and tensile properties of Al–15%Mg2Si–0.15%Li composite. Mater. Sci. Eng. A 576, 36–44 (2013)

    Article  CAS  Google Scholar 

  24. R. Ivanov, A. Deschamps, F. Geuser, High throughput evaluation of the effect of Mg concentration on natural ageing of Al–Cu–Li–(Mg) alloys. Scr. Mater. 150, 156–159 (2018)

    Article  CAS  Google Scholar 

  25. P. Wang, C. Gammer, F. Brenne, K.G. Prashanth, R.G. Mendes, M.H. Rümmeli, T. Gemming, J. Eckert, S. Scudinoa, Microstructure and mechanical properties of a heat-treatable Al–3.5Cu–1.5 Mg–1Si alloy produced by selective laser melting. Mater. Sci. Eng. A 711, 562–570 (2018)

    Article  CAS  Google Scholar 

  26. C. Xu, R. Zheng, S. Hanada, W. Xiao, C. Ma, Effect of hot extrusion and subsequent T6 treatment on the microstructure evolution and tensile properties of an Al–6Si–2Cu–0.5 Mg alloy. Mater. Sci. Eng. A 710, 102–110 (2018)

    Article  CAS  Google Scholar 

  27. M. Khantha, D.P. Pope, V. Vitek, Dislocation generation instability and the brittle-to-ductile transition. Mater. Sci. Eng. A 192, 435–442 (1995)

    Article  Google Scholar 

  28. R.F. Gutiérrez, F. Sket, E. Maire, F. Wilde, E. Boller, G. Requena, Effect of solution heat treatment on microstructure and damage accumulation in cast Al–Cu alloys. J. Alloys Compd. 697, 341–352 (2017)

    Article  Google Scholar 

  29. K. Euh, J.G. Jung, E.J. Baek, J.M. Lee, H.W Kim, Effect of heat-treatment on microstructure and mechanical properties of sonicated multicomponent AlMgSiCuZn alloy. Light Metals. Springer International Publishing, pp 379–383 (2017)‏

  30. M.F. Nikoo, H. Azizi, N. Parvin, H.Y. Naghibi, The influence of heat treatment on microstructure and wear properties of friction stir welded AA6061-T6/Al2O3 nanocomposite joint at four different traveling speed. J. Manuf. Process. 22, 90–98 (2016)

    Article  Google Scholar 

  31. A. Chen, Y. Peng, L. Zhang, G. Wu, Y. Li, Microstructural evolution and mechanical properties of cast Al–3Li–1.5 Cu–0.2 Zr alloy during heat treatment. Mater. Charact. 114, 234–242 (2016)

    Article  CAS  Google Scholar 

  32. C. Veer Singh, D.H. Warner, An atomistic-based hierarchical multiscale examination of age hardening in an Al–Cu alloy. Metall. Mater. Trans. A 44(6), 2625–2644 (2013)

    Article  Google Scholar 

  33. H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, G. Qin, Recent developments in rare-earth free wrought magnesium alloys having high strength: a review. J. Alloys Compd. 663, 321–331 (2016)

    Article  CAS  Google Scholar 

  34. O. Bataineh, M. Almomani, Applying ANOVA and DOE to study the effect of manganese on the hardness and wear rate of artificially aged Al-4.5 wt% Cu alloys. Int. J. Cast Met. Res. 31, 56–63 (2018)

    Article  CAS  Google Scholar 

  35. A.E. Steinman, S. Corthay, K.L. Firestein, D.G. Kvashnin, A.M. Kovalskii, A.T. Matveev, P.B. Sorokin, D.V. Golberg, D.V. Shtansky, Al-based composites reinforced with AlB2, AlN and BN phases: experimental and theoretical studies. Mater. Des. 141, 88–98 (2018)

    Article  CAS  Google Scholar 

  36. A. Tevatia, S.K. Srivastava, The energy-based multistage fatigue crack growth life prediction model for DRMMCs. Fatigue Fract. Eng. Mater. Struct. 41(12), 2530–2540 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge University of Tehran and Iran National Science Foundation for lab facilities and financial support of this work (Grant No. 90004092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Emamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, H., Emamy, M., Rasizadeh Ghani, J. et al. Elucidating the Effects of Cu and Hot-Extrusion on Tensile Properties of Al–AlSb In Situ Composite. Met. Mater. Int. 27, 2682–2695 (2021). https://doi.org/10.1007/s12540-020-00632-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00632-w

Keywords

Navigation