Skip to main content
Log in

Influence of SiAlON Ceramic Reinforcement on Ti6Al4V Alloy Matrix via Spark Plasma Sintering Technique

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The titanium-based composite was fabricated by strengthening Ti6Al4V alloy with addition of SiAlON ceramics utilizing spark plasma sintering technique. Ti6Al4V and SiAlON powders were mixed in a T2F Turbula mixer with different proportions (5, 10, 15 and 20 vol%) and the admixed powders were consolidated using spark plasma sintering to produce titanium matrix composites. The characterization of the sintered composites was performed using X-ray diffraction, optical microscopy and scanning electron microscopy. The influence of SiAlON additions on densification, microstructure, microhardness and fracture morphology were investigated on the sintered composites. The experimental results revealed that the densification of the sintered titanium matrix composites was in the range of 95%–98%, which decreased with an increase in SiAlON addition. However, an increase in microhardness values ranging from 363 to 574 HV0.1 was achieved. The microstructure shows that the SiAlON ceramic particle was uniformly distributed within the titanium matrix composites which comprises of a mixture of lamellar colonies with β grain boundaries. The fracture features of all composites exhibit mixed fracture of both intergranular and transgranular fracture mechanism.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O.E. Falodun, B.A. Obadele, S.R. Oke, O.O. Ige, P.A. Olubambi, M.L. Lethabane, S.W. Bhero, Influence of spark plasma sintering on microstructure and wear behaviour of Ti–6Al–4V reinforced with nanosized TiN. Trans. Nonferr. Metals Soc. China 28, 47–54 (2018)

    Article  CAS  Google Scholar 

  2. K. Kondoh, T. Threrujirapapong, J. Umeda, B. Fugetsu, High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion. Compos. Sci. Technol. 72, 1291–1297 (2012)

    Article  CAS  Google Scholar 

  3. L. Yan, W.-J. Guo, L. Ying, Bimodal-grained Ti fabricated by high-energy ball milling and spark plasma sintering. Trans. Nonferr. Metals Soc. China 26, 1170–1175 (2016)

    Article  Google Scholar 

  4. F. Weng, C. Chen, H. Yu, Research status of laser cladding on titanium and its alloys: a review. Mater. Des. 58, 412–425 (2014)

    Article  CAS  Google Scholar 

  5. S.C. Tjong, Y.-W. Mai, Processing-structure-property aspects of particulate-and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68, 583–601 (2008)

    Article  CAS  Google Scholar 

  6. H. Tsang, C. Chao, C. Ma, Effects of volume fraction of reinforcement on tensile and creep properties of in situ TiB/Ti MMC. Scripta Mater. 37, 1359–1365 (1997)

    Article  CAS  Google Scholar 

  7. B.A. Obadele, O.E. Falodun, S.R. Oke, P.A. Olubambi, Spark plasma sintering behaviour of commercially pure titanium micro-alloyed with Ta–Ru. Part. Sci. Technol. 37, 886–892 (2019)

    Article  Google Scholar 

  8. O.E. Falodun, B.A. Obadele, S.R. Oke, M.E. Maja, P.A. Olubambi, Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys. J. Alloys Compd. 736, 202–210 (2018)

    Article  CAS  Google Scholar 

  9. Z.-H. Zhang, X.-B. Shen, F.-C. Wang, W. Sai, S.-K. Li, H.-N. Cai, Microstructure characteristics and mechanical properties of TiB/Ti-1.5 Fe-2.25 Mo composites synthesized in situ using SPS process. Trans. Nonferr. Metals Soc. China 23, 2598–2604 (2013)

    Article  CAS  Google Scholar 

  10. S. Maseko, O. Fayomi, Characterization of ceramic reinforced titanium matrix composites fabricated by spark plasma sintering for anti-ballistic applications. Def. Technol. 14, 408–411 (2018)

    Article  Google Scholar 

  11. T. Ekström, M. Nygren, SiAION ceramics. J. Am. Ceram. Soc. 75, 259–276 (1992)

    Article  Google Scholar 

  12. F.L. Riley, Silicon nitride and related materials. J. Am. Ceram. Soc. 83, 245–265 (2000)

    Article  CAS  Google Scholar 

  13. B. Basu, J. Vleugels, M. Kalin, O. Van Der Biest, Friction and wear behaviour of SiAlON ceramics under fretting contacts. Mater. Sci. Eng., A 359, 228–236 (2003)

    Article  Google Scholar 

  14. N.C. Acikbas, S. Tegmen, S. Ozcan, G. Acikbas, Thermal shock behaviour of α: β-SiAlON–TiN composites. Ceram. Int. 40, 3611–3618 (2014)

    Article  CAS  Google Scholar 

  15. O.E. Falodun, B.A. Obadele, S.R. Oke, O.O. Ige, P.A. Olubambi, Effect of TiN and TiCN additions on spark plasma sintered Ti–6Al–4V, Part. Sci. Technol. (2018). https://doi.org/10.1080/02726351.2018.1515798

    Article  Google Scholar 

  16. R. Sivakumar, K. Aoyagi, T. Akiyama, Thermal conductivity of combustion synthesized β-sialons. Ceram. Int. 35, 1391–1395 (2009)

    Article  CAS  Google Scholar 

  17. M.E. Maja, O.E. Falodun, B.A. Obadele, S.R. Oke, P.A. Olubambi, Nanoindentation studies on TiN nanoceramic reinforced Ti–6Al–4V matrix composite. Ceram. Int. 44, 4419–4425 (2018)

    Article  CAS  Google Scholar 

  18. G. Cao, R. Metselaar, alpha.’-Sialon ceramics: a review. Chem. Mater. 3, 242–252 (1991)

    Article  CAS  Google Scholar 

  19. Z. Zhang, X. Shen, F. Wang, S. Lee, L. Wang, Densification behavior and mechanical properties of the spark plasma sintered monolithic TiB2 ceramics. Mater. Sci. Eng., A 527, 5947–5951 (2010)

    Article  Google Scholar 

  20. S. Oke, O. Ige, O. Falodun, M.R. Mphahlele, P. Olubambi, Densification behavior of spark plasma sintered duplex stainless steel reinforced with TiN nanoparticles, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, p. 012034

  21. E. Ghasali, K. Shirvanimoghaddam, A.H. Pakseresht, M. Alizadeh, T. Ebadzadeh, Evaluation of microstructure and mechanical properties of Al–TaC composites prepared by spark plasma sintering process. J. Alloys Compd. 705, 283–289 (2017)

    Article  CAS  Google Scholar 

  22. S.R. Oke, O.O. Ige, O.E. Falodun, A.M. Okoro, M.R. Mphahlele, P.A. Olubambi, Powder metallurgy of stainless steels and composites: a review of mechanical alloying and spark plasma sintering. Int. J. Adv. Manuf. Technol. 102, 3271–3290 (2019)

    Article  Google Scholar 

  23. Y. Cheng, Z. Cui, L. Cheng, D. Gong, W. Wang, Effect of particle size on densification of pure magnesium during spark plasma sintering. Adv. Powder Technol. 28, 1129–1135 (2017)

    Article  CAS  Google Scholar 

  24. S. Diouf, A. Molinari, Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol. 221, 220–227 (2012)

    Article  CAS  Google Scholar 

  25. Y. Song, Y. Li, Z. Zhou, Y. Lai, Y. Ye, A multi-field coupled FEM model for one-step-forming process of spark plasma sintering considering local densification of powder material. J. Mater. Sci. 46, 5645–5656 (2011)

    Article  CAS  Google Scholar 

  26. A. Taşdemirci, A. Hızal, M. Altındiş, I.W. Hall, M. Güden, The effect of strain rate on the compressive deformation behavior of a sintered Ti6Al4V powder compact. Mater. Sci. Eng., A 474, 335–341 (2008)

    Article  Google Scholar 

  27. M.T. Jovanović, S. Tadić, S. Zec, Z. Mišković, I. Bobić, The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy. Mater. Des. 27, 192–199 (2006)

    Article  Google Scholar 

  28. O.E. Falodun, B.A. Obadele, S.R. Oke, A.M. Okoro, P.A. Olubambi, Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int. J. Adv. Manuf. Technol. 102, 1689–1701 (2019)

    Article  Google Scholar 

  29. G. Sivakumar, V. Ananthi, S. Ramanathan, Production and mechanical properties of nano SiC particle reinforced Ti–6Al–4V matrix composite. Trans. Nonferr. Metals Soc. China 27, 82–90 (2017)

    Article  CAS  Google Scholar 

  30. D.K. Koli, G. Agnihotri, R. Purohit, Properties and characterization of Al-Al2O3 composites processed by casting and powder metallurgy routes. Int. J. Latest Trends Eng. Technol. 2, 486–496 (2013)

    Google Scholar 

  31. O. Falodun, B. Obadele, S. Oke, M. Maja, P. Olubambi, Synthesis of Ti–6Al–4V alloy with nano-TiN microstructure via spark plasma sintering technique, in: IOP conference series: Materials science and engineering, IOP Publishing, 2017, p. 012029

  32. R. Naik, W. Pollock, W. Johnson, Effect of a high-temperature cycle on the mechanical properties of silicon carbide/titanium metal matrix composites. J. Mater. Sci. 26, 2913–2920 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Global Excellence and Stature at the University of Johannesburg and National Research Foundation, South Africa for providing the necessary financial supports. Also, the Institute of Nanoengineering Research at the Tshwane University of Technology in using spark plasma sintering facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwasegun Eso Falodun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falodun, O.E., Oke, S.R., Obadele, B.A. et al. Influence of SiAlON Ceramic Reinforcement on Ti6Al4V Alloy Matrix via Spark Plasma Sintering Technique. Met. Mater. Int. 27, 1769–1778 (2021). https://doi.org/10.1007/s12540-019-00553-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00553-3

Keywords

Navigation