Skip to main content
Log in

Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al–Ni–Y Metallic Glass

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Both thermoplastic formability and electrical conductivity of Al–Ni–Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (ΔTx) and the difference in specific heat between the frozen glass state and the supercooled liquid state (ΔCp). The measured ΔTx and ΔCp values show a strong composition dependence. However, the composition showing the highest ΔTx and ΔCp does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ΔTx and ΔCp may be related to enhancement of icosahedral SRO near Tg during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al–Ni–Y system located inside the composition triangle whose vertices compositions are Al87Ni3Y10, Al85Ni5Y10, and Al86Ni5Y9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Wiest, G. Duan, M.D. Demetriou, L.A. Wiest, A. Peck, G. Kaltenboeck, B. Wiest, W.L. Johnson, Acta Mater. 56, 2625 (2008)

    Article  CAS  Google Scholar 

  2. G. Kumar, A. Desai, J. Schroers, Adv. Mater. 23, 461 (2011)

    Article  CAS  Google Scholar 

  3. M. Carmo, R.C. Sekol, S. Ding, G. Kumar, J. Schroers, A.D. Taylor, ACS Nano 5, 2979 (2011)

    Article  CAS  Google Scholar 

  4. R.C. Sekol, G. Kumar, M. Carmo, F. Gittleson, N. Hardesty-Dyck, S. Mukherjee, J. Schroers, A.D. Taylor, Small 9, 2081 (2013)

    Article  CAS  Google Scholar 

  5. S.Y. Kim, S.J. Kim, S.S. Jee, J.M. Park, K.H. Park, S.C. Park, E.A. Cho, J.H. Lee, I.Y. Song, S.M. Lee, I.T. Han, K.R. Lim, W.T. Kim, J.C. Park, J. Eckert, D.H. Kim, E.S. Lee, Sci. Rep. 3, 2185 (2013)

    Article  Google Scholar 

  6. K.C. Kim, K.R. Lim, E.S. Lee, W.T. Kim, A. Gebert, J. Eckert, D.H. Kim, Corros. Sci. 77, 1 (2013)

    Article  CAS  Google Scholar 

  7. A. Inoue, Prog. Mater. Sci. 43, 365 (1998)

    Article  CAS  Google Scholar 

  8. A. Peker, W.L. Johnson, Appl. Phys. Lett. 64, 2342 (1993)

    Article  Google Scholar 

  9. H.W. Kui, A.L. Greer, D. Turnbull, Appl. Phys. Lett. 45, 615 (1984)

    Article  CAS  Google Scholar 

  10. W.N. Myung, K.H. Parkxs, D.H. Jang, L. Battezzati, T. Zhang, A. Inoue, T. Masumoto, Mater. Sci. Eng. A 226, 406 (1997)

    Article  Google Scholar 

  11. S.H. Hong, J.T. Kim, H.J. Park, Y.S. Kim, Y.S. Na, K.R. Lim, J.K. Lee, J.H. Lee, W.M. Wang, J.M. Park, K.B. Kim, Sci. Adv. Mater. 8, 1989 (2016)

    Article  Google Scholar 

  12. S.H. Hong, J.T. Kim, S.C. Mun, Y.S. Kim, H.J. Park, Y.S. Na, K.R. Lim, J.M. Park, K.B. Kim, Intermetallics 91, 90 (2017)

    Article  CAS  Google Scholar 

  13. C.A. Angell, Science 267, 1924 (1995)

    Article  CAS  Google Scholar 

  14. X. Li, X. Bian, L. Hu, Y. Wu, J. Guo, J. Zhang, J. Appl. Phys. 101, 103540 (2007)

    Article  Google Scholar 

  15. A. Takeuchi, A. Inoue, Mater. Trans. JIM 41, 1372 (2000)

    Article  CAS  Google Scholar 

  16. X. Li, X. Bian, L. Hu, Phys. Lett. A 374, 3784 (2010)

    Article  CAS  Google Scholar 

  17. J. Ding, Y.Q. Cheng, H. Sheng, E. Ma, Phys. Rev. B 85, 060201(R) (2012)

    Article  Google Scholar 

  18. Q. Wang, C.T. Liu, Y. Yang, Y.D. Dong, J. Lu, Phys. Rev. Lett. 106, 215505 (2011)

    Article  CAS  Google Scholar 

  19. S.O. Kasap, Principles of Electronic Materials and Devices, 3rd edn. (McGraw Hill, New York, 2006)

    Google Scholar 

  20. V. Raghavan, JPEDAV 31, 57 (2010)

    Article  CAS  Google Scholar 

  21. V.C. Sricastava, S.N. Ojha, Bull. Mater. Sci. 28, 125 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Hyang Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, M.Y., Park, S.H., Kim, K.C. et al. Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al–Ni–Y Metallic Glass. Met. Mater. Int. 24, 1256–1261 (2018). https://doi.org/10.1007/s12540-018-0130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0130-7

Keywords

Navigation