Skip to main content
Log in

Modeling Deformation Flow Curves and Dynamic Recrystallization of BA-160 Steel During Hot Compression

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The hot deformation behavior of a high strength low carbon steel was investigated using hot compression test at the temperature range of 850–1100 °C and under strain rates varying from 0.001 to 1 s−1. It was found that the flow curves of the steel were typical of dynamic recrystallization at the temperature of 950 °C and above; at tested strain rates lower than 1 s−1. A very good correlation between the flow stress and Zener–Hollomon parameter was obtained using a hyperbolic sine function. The activation energy of deformation was found to be around 390 kJ mol−1. The kinetics of dynamic recrystallization of the steel was studied by comparing it with a hypothetical dynamic recovery curve, and the dynamically fraction recrystallized was modeled by the Kolmogorov–Johnson–Mehl–Avrami relation. The Avrami exponent was approximately constant around 1.8, which suggested that the type of nucleation was one of site saturation on grain boundaries and edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.C. Lin, X.-M. Chen, Mater. Des. 32, 1733 (2011)

    Article  Google Scholar 

  2. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng., A 238, 219 (1997)

    Article  Google Scholar 

  3. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater Sci. 60, 130 (2014)

    Article  Google Scholar 

  4. K. Huang, R.E. Logé, Mater. Des. 111, 548 (2016)

    Article  Google Scholar 

  5. H. Yada, in International Symposium on Accelerated Cooling of Rolled Steel, Conference of Metallurgists, vol. 105, ed. by G.E. Ruddle, A.F. Crawley (Pergamon Press)

  6. A. Laasraoui, J. Jonas, Metall. Mater. Trans. A 22, 151 (1991)

    Article  Google Scholar 

  7. S.-I. Kim, Y.-C. Yoo, Mater. Sci. Eng., A 311, 108 (2001)

    Article  Google Scholar 

  8. S.-I. Kim, Y. Lee, D.-L. Lee, Y.-C. Yoo, Mater. Sci. Eng., A 355, 384 (2003)

    Article  Google Scholar 

  9. A. Saha, G.B. Olson, J. Comput. Aided Mater. Des. 14, 177 (2007)

    Article  Google Scholar 

  10. A. Saha, J. Jung, G.B. Olson, J. Comput. Aided Mater. Des. 14, 201 (2007)

    Article  Google Scholar 

  11. E.M. Mielnik, Metalworking Science and Engineering, vol. 241 (McGraw-Hill, New York, 1991)

    Google Scholar 

  12. R.W. Evans, P.J. Scharning, Mater. Sci. Technol. 17, 995 (2001)

    Article  Google Scholar 

  13. R. Ebrahimi, A. Najafizadeh, J. Mater. Process. Technol. 152, 136 (2004)

    Article  Google Scholar 

  14. D. Zhao, ASM Handbook: Mechanical Testing and Evaluation (ASM International, Place PUblished, New York, 2000), p. 798

    Google Scholar 

  15. P. Dadras, J.F. Thomas, Metall. Mater. Trans. A 12, 1867 (1981)

    Article  Google Scholar 

  16. P.L. Charpentier, B.C. Stone, S.C. Ernst, J.F. Thomas, Metall. Mater. Trans. A 17, 2227 (1986)

    Article  Google Scholar 

  17. M.C. Mataya, V.E. Sackschewsky, Metall. Mater. Trans. A 25, 2737 (1994)

    Article  Google Scholar 

  18. R.L. Goetz, S.L. Semiatin, J. Mater. Eng. Perform. 10, 710 (2001)

    Article  Google Scholar 

  19. N.D. Ryan, H.J. McQueen, Can. Metall. Q. 29, 147 (1990)

    Article  Google Scholar 

  20. E.I. Poliak, J.J. Jonas, Acta Mater. 44, 127 (1996)

    Article  Google Scholar 

  21. J.J. Jonas, E.I. Poliak, Mater. Sci. Forum 57, 426–432 (2003)

    Google Scholar 

  22. E.I. Poliak, J.J. Jonas, ISIJ Int. 43, 684 (2003)

    Article  Google Scholar 

  23. E.I. Poliak, J.J. Jonas, ISIJ Int. 43, 692 (2003)

    Article  Google Scholar 

  24. J.J. Jonas, X. Quelennec, L. Jiang, É. Martin, Acta Mater. 57, 2748 (2009)

    Article  Google Scholar 

  25. H. Mirzadeh, A. Najafizadeh, M. Moazeny, Metall. Mater. Trans. A 40, 2950 (2009)

    Article  Google Scholar 

  26. A.I. Fernández, P. Uranga, B. López, J.M. Rodriguez-Ibabe, Mater. Sci. Eng., A 361, 367 (2003)

    Article  Google Scholar 

  27. A. Momeni, S.M. Abbasi, J. Alloys Compd. 622, 318 (2015)

    Article  Google Scholar 

  28. L.P. Karjalainen, M.C. Somani, D.A. Porter, Mater. Sci. Forum 1181, 426 (2003)

    Google Scholar 

  29. K. Hirano, M. Cohen, B. Averbach, Acta Metall. 9, 440 (1961)

    Article  Google Scholar 

  30. Y. Wu, M. Zhang, X. Xie, J. Dong, F. Lin, S. Zhao, J. Alloys Compd. 656, 119 (2016)

    Article  Google Scholar 

  31. R. Schramm, R. Reed, Metall. Mater. Trans. A 6, 1345 (1975)

    Article  Google Scholar 

  32. P.J. Brofman, G.S. Ansell, Metall. Mater. Trans. A 9, 879 (1978)

    Article  Google Scholar 

  33. T.-H. Lee, H.-Y. Ha, B. Hwang, S.-J. Kim, E. Shin, Metall. Mater. Trans. A 43, 4455 (2012)

    Article  Google Scholar 

  34. L. Vitos, J.-O. Nilsson, B. Johansson, Acta Mater. 54, 3821 (2006)

    Article  Google Scholar 

  35. D. Ponge, G. Gottstein, Acta Mater. 46, 69 (1998)

    Article  Google Scholar 

  36. M. Jafari, A. Najafizadeh, Mater. Sci. Eng., A 501, 16 (2009)

    Article  Google Scholar 

  37. A. Momeni, H. Arabi, A. Rezaei, H. Badri, S.M. Abbasi, Mater. Sci. Eng., A 528, 2158 (2011)

    Article  Google Scholar 

  38. H.J. McQueen, N.D. Ryan, Mater. Sci. Eng., A 322, 43 (2002)

    Article  Google Scholar 

  39. Y. Estrin, Unified Constitutive Laws of Plastic Deformation (ACADEMIC PRESS, INC., Place PUblished, 1996)

    Google Scholar 

  40. Y. Estrin, H. Mecking, Acta Metall. 32, 57 (1984)

    Article  Google Scholar 

  41. J. Humphreys, G.S. Rohrer, A. Rollett, Recrystallization and Related Annealing Phenomena (Elsevier, New York, 2017)

    Google Scholar 

  42. A. Dehghan-Manshadi, P.D. Hodgson, ISIJ Int. 47, 1799 (2007)

    Article  Google Scholar 

  43. J.W. Christian, The Theory of Transformations in Metals and Alloy, vol. 529 (Pergamon, London, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Mohammad Sharifi.

Appendix

Appendix

It is known through curve fitting that \(\sigma = y\left( \varepsilon \right)\), and further \(\theta = d\sigma /d\varepsilon = y^{\prime}\left( \varepsilon \right)\). Thus, it can be written:

$$\frac{{d^{2} \theta }}{{d\sigma^{2} }} = \frac{{d\left( {d\theta /d\sigma } \right)}}{d\sigma }$$
(26)

According to the chain rule

$$\frac{d\theta }{d\sigma } = \frac{{d\left( {d\sigma /d\varepsilon } \right)}}{d\varepsilon }\frac{1}{d\sigma /d\varepsilon } = \frac{{y^{\prime\prime}}}{{y^{\prime}}}$$
(27)

Similarly,

$$\frac{{d^{2} \theta }}{{d\sigma^{2} }} = \frac{{d\left( {y^{\prime\prime}/y^{\prime}} \right)}}{d\varepsilon }\frac{1}{d\sigma /d\varepsilon } = \frac{{y^{\prime\prime\prime}y^{\prime} - \left( {y^{\prime\prime}} \right)^{2} }}{{\left( {y^{\prime}} \right)^{3} }}$$
(28)

when in Eq. (19) \(d\rho /d\varepsilon = 0\), it can be considered that there is an equilibrium in net formation and annihilation of dislocations with proceeding deformation; according to the Eq. (18), it gives that:

$$\rho_{\text{s}} = \frac{{k_{1} }}{{k_{2} }},$$
(29)

where ρs is the saturated dislocation density. The stress corresponding to this condition is the saturated stress (σs) shown on the DRV curve of Fig. 1, which can be calculated using Eq. (20) as:

$$\sigma_{s} = \alpha Gb\left( { \frac{{k_{1} }}{{k_{2} }} } \right)^{1/2}$$
(30)

rearranging the Eq. (20) gives:

$$\rho = \left( {\sigma_{WH} /\alpha Gb} \right)^{2}$$
(31)

Through differentiation, it leads to:

$$\frac{d\rho }{d\varepsilon } = \left( { \frac{{2\sigma_{WH} }}{{\left( {\alpha Gb} \right)^{2} }} } \right)\left( {\frac{{d\sigma_{WH} }}{d\varepsilon }} \right) = \left( { \frac{{2\sigma_{WH} }}{{\left( {\alpha Gb} \right)^{2} }} } \right)\theta_{WH} ,$$
(32)

and by inserting Eqs. (30), (31) and (32) in Eq. (16), we come to:

$$\left( { \frac{{2\sigma_{WH} }}{{\left( {\alpha Gb} \right)^{2} }} } \right)\theta_{WH} = k_{2} \left( { \frac{{\sigma_{s} }}{\alpha Gb} } \right)^{2} - k_{2} \left( {\frac{{\sigma_{WH} }}{\alpha Gb}} \right)^{2}$$
(33)

That, finally, leads to the Eq. (23).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahriari, B., Vafaei, R., Mohammad Sharifi, E. et al. Modeling Deformation Flow Curves and Dynamic Recrystallization of BA-160 Steel During Hot Compression. Met. Mater. Int. 24, 955–969 (2018). https://doi.org/10.1007/s12540-018-0113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0113-8

Keywords

Navigation