Skip to main content
Log in

Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B. Sun, Z. Suo, W. Yang, Acta Mater. 45, 1907–1915 (1997)

    Article  Google Scholar 

  2. B. Sun, Z. Suo, Acta Mater. 45, 4953–4962 (1997)

    Article  Google Scholar 

  3. A.F. Bower, E. Wininger, J. Mech. Phys. Solids 52, 1289–1317 (2004)

    Article  Google Scholar 

  4. M. Nygards, P. Gudmundson, Comput. Mater. Sci. 24, 513–519 (2002)

    Article  Google Scholar 

  5. A. Musienko, A. Tatschl, K. Schmidegg, O. Kolednik, R. Pippan, G. Cailletaud, Acta Mater. 55, 4121–4136 (2007)

    Article  Google Scholar 

  6. H.J. Chang, H.N. Han, S.J. Park, J.H. Cho, K.H. Oh, Met. Mater. Int. 16, 553–558 (2010)

    Article  Google Scholar 

  7. S. Manchiraju, D. Gaydosh, O. Benafan, R. Noebe, R. Vaidyanathan, P.M. Anderson, Acta Mater. 59, 5238–5249 (2011)

    Article  Google Scholar 

  8. C. Herring, in The Physics of Powder Metallurgy, ed. by W. Kingston (McGraw-Hill, New York, 1951), p. 143

    Google Scholar 

  9. R. Quey, P.R. Dawson, F. Barbe, Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011)

    Article  Google Scholar 

  10. F. Barbe, R. Quey, 18 ème Congrès Français de Mécanique (2007)

  11. C. Konke, S. Eckardt, S. Hafner, T. Luther, J. Unger, Int. J. Multiscale Comput. Eng. 8, 17–36 (2010)

    Article  Google Scholar 

  12. Y. Bhandari, S. Sarkar, M. Groeber, M.D. Uchic, D.M. Dimiduk, S. Ghosh, Comput. Mater. Sci. 41, 222–235 (2007)

    Article  Google Scholar 

  13. S. Ghosh, Y. BlIandari, M. Groeber, Comput.-Aided Des. 40, 293–310 (2008)

    Article  Google Scholar 

  14. A.C.O. Miranda, L.F. Martha, P.A. Wawrzynek, A.R. Ingraffea, Eng. Comput. 25, 207–219 (2009)

    Article  Google Scholar 

  15. S.E. Dillard, J.F. Bingert, D. Thoma, B. Hamann, I.E.E.E. Trans, Vis. Comput. Graph. 13, 1528–1535 (2007)

    Article  Google Scholar 

  16. K. Brakke, Exp. Math. 1, 141–165 (1992)

    Article  Google Scholar 

  17. A. Kuprat, A. Khamayseh, D. George, L. Larkey, J. Comput. Phys. 172, 99–118 (2001)

    Article  Google Scholar 

  18. R.H. Moore, G.S. Rohrer, S. Saigal, Eng. Comput. 25, 221–235 (2009)

    Article  Google Scholar 

  19. F. Barbe, L. Decker, D. Jeulin, G. Cailletaud, Int. J. Plast 17, 513–536 (2001)

    Article  Google Scholar 

  20. M. Tanemura, Forma 18, 221–247 (2003)

    Google Scholar 

  21. T.-C. Chen, T. Li, X. Zhang, S.B. Desu, J. Mater. Res. 12, 1569–1575 (1997)

    Article  Google Scholar 

  22. S. Kumar, S.K. Kurtz, J.R. Banavar, M. Sharma, J. Stat. Phys. 67, 523–551 (1992)

    Article  Google Scholar 

  23. A. Ullah, G.Q. Liu, J.H. Luan, W.W. Li, M.U. Rahman, M. Ali, Mater. Charact. 91, 65–75 (2014)

    Article  Google Scholar 

  24. A. Ullah, G.Q. Liu, H. Wang, M. Khan, D.F. Khan, J.H. Luan, Mater. Express 3, 109–118 (2013)

    Article  Google Scholar 

  25. J.C. Tucker, L.H. Chan, G.S. Rohrer, M.A. Groeber, A.D. Rollett, Scripta Mater. 66, 554–557 (2012)

    Article  Google Scholar 

  26. S. Donegan, J. Tucker, A. Rollett, K. Barmak, M. Groeber, Acta Mater. 61, 5595–5604 (2013)

    Article  Google Scholar 

  27. M. Groeber, B. Haley, M. Uchic, D. Dimiduk, S. Ghosh, Mater. Charact. 57, 259–273 (2006)

    Article  Google Scholar 

  28. D. Rowenhorst, A. Lewis, G. Spanos, Acta Mater. 58, 5511–5519 (2010)

    Article  Google Scholar 

  29. F. Wakai, N. Enomoto, H. Ogawa, Acta Mater. 48, 1297–1311 (2000)

    Article  Google Scholar 

  30. W.J. Schroeder, J.A. Zarge, W.E. Lorensen, in SIGGRAPH ‘Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques’ (ACM, New York, 1992), pp. 65–70

  31. D.P. Luebke, I.E.E.E. Comput, Graph. Appl. 21, 24–35 (2001)

    Article  Google Scholar 

  32. S.B. Lee, G.S. Rohrer, A.D. Rollett, Model. Simul. Mater. Sci. Eng. 22, 21 (2014)

    Article  Google Scholar 

  33. Z. Wu, J.M. Sullivan, Int. J. Numer. Methods Eng. 58, 189–207 (2003)

    Article  Google Scholar 

  34. P.M. Knupp, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, SAND2007-8128C, AIAA (2007)

  35. M. Bern, D. Eppstein, J. Gilbert, J. Comput. Syst. Sci. 48, 384–409 (1994)

    Article  Google Scholar 

  36. M. Goelke, Element quality and check (2014), http://www.altairuniversity.com. Accessed 25 July 2017

  37. A. Hannukainen, S. Korotov, M. Křížek, Numer. Math. 120, 79–88 (2012)

    Article  Google Scholar 

  38. T.A. Burkhart, D.M. Andrews, C.E. Dunning, J. Biomech. 46, 1477–1488 (2013)

    Article  Google Scholar 

  39. J. Shewchuk, What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures, University of California at Berkeley, p. 73 (2002)

  40. R. Abgrall, J. Comput. Phys. 114, 45–58 (1994)

    Article  Google Scholar 

  41. Wanai Li, Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids (Springer, Berlin, 2014), pp. 1–10

    Google Scholar 

  42. H. Ledbetter, E. Naimon, J. Phys. Chem. Ref. Data 3, 897–935 (1974)

    Article  Google Scholar 

  43. C. Wert, E. Tyndall, J. Appl. Phys. 20, 587–589 (1949)

    Article  Google Scholar 

  44. C. Hull, International Critical Tables of Numerical Data, Physics, Chemistry and technoLogy (National Academies, Washington, DC, 1929)

    Google Scholar 

  45. A. Alankar, I.N. Mastorakos, D.P. Field, Acta Mater. 57, 5936–5946 (2009)

    Article  Google Scholar 

  46. D. Peirce, R.J. Asaro, A. Needleman, Acta Metall. 31, 1951–1976 (1983)

    Article  Google Scholar 

  47. Y. Choi, T. Parthasarathy, D. Dimiduk, M. Uchic, Metall. Mater. Trans. A 37, 545–550 (2006)

    Article  Google Scholar 

  48. Y. Choi, M. Uchic, T. Parthasarathy, D. Dimiduk, Scripta Mater. 57, 849–852 (2007)

    Article  Google Scholar 

  49. ASM International Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (ASM International, USA, 2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Defense Development (ADD) and by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (MSIP) (No. NRF-2015R1A5A1037627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukbin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MJ., Jeon, YJ., Son, GE. et al. Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure. Met. Mater. Int. 24, 845–859 (2018). https://doi.org/10.1007/s12540-018-0083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0083-x

Keywords

Navigation