Skip to main content
Log in

Predicting creep strengths and lifetimes of creep resistant engineering alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The physical basis for predicting the long-term creep strengths and lifetimes at application temperatures using creep parameters determined from short-term creep tests is investigated for complex creep resistant engineering alloys. It is shown that the seemingly unpredictable stress and temperature dependence of minimum creep rate of such alloys can be rationalised using an approach based on the new power law creep equation that incorporate the tensile strength. This is demonstrated using the tensile and creep data measured for two completely different types of alloys: steel 11Cr-2W-0.4Mo-1Cu-Nb-V and Ni base superalloy 15Cr-28Co-4Mo-2.5Ti-3Al. For both alloys, the stress exponent n determined does not depend on temperature and activation energy of creep does not depend on stress. Consequently, it becomes possible to use the new power law creep equation in combination with the Monkman-Grant relationship to predict the long term creep rupture strengths and lifetimes and microstructure stability of the two alloys from short term creep test data. The implications of the results for creep mechanism identification and future microstructure analysis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Brown and M. F. Ashby, Scripta Mater. 14, 1297 (1980).

    Article  Google Scholar 

  2. V. Gray and M. Whittaker, Mat. Sci. Eng. A 623, 96 (2015).

    Article  Google Scholar 

  3. X. Z. Zhang, X. J. Wu, R. Liu, J. Liu, and M. X. Yao, Mat. Sci. Eng. A 689, 345 (2017).

    Article  Google Scholar 

  4. K. Maruyama, J. Nakamura, N. Sekido, and K. Yoshimi, Mat. Sci. Eng. A 696, 104 (2017).

    Article  Google Scholar 

  5. A. K. Mukherjee, Mat. Sci. Eng. A 322, 1 (2002).

    Article  Google Scholar 

  6. NIMS creep data sheet no.51A and 28B, http://smds.nims.go.jp/creep/index_en.html (accessed August 8, 2016).

  7. V. M. Radhakrishnan, J. Mater. Eng. Perform. 1, 123 (1992).

    Article  Google Scholar 

  8. J. Cadek, V. Sustek, and M. Pahutova, Mat. Sci. Eng. A 225, 22 (1997).

    Article  Google Scholar 

  9. F. Abe, Metall. Mater. Trans. A 36, 321 (2005).

    Article  Google Scholar 

  10. K. Sawada, K. Kubo, and F. Abe, Mat. Sci. Eng. A 319, 784 (2001).

    Article  Google Scholar 

  11. K. Kimura, K. Sawada, H. Kushima, and K. Kubo, Int. J. Mater. Res. 99, 395 (2008).

    Article  Google Scholar 

  12. K. Kimura, H. Kushima, and K. Sawada, Mat. Sci. Eng. A 510-511, 58 (2009).

    Article  Google Scholar 

  13. B. Wilshire and P. J. Scharning, Int. Mater. Rev. 53, 91 (2008).

    Article  Google Scholar 

  14. D. V. V. Satyanarayana, G. Malakondaiah, and D. S. Sarma, Mat. Sci. Eng. A 323, 119 (2002).

    Article  Google Scholar 

  15. N. Q. Vo, C. H. L. Liebscher, M. J. S. Rawlings, M. Asta, and D. C. Dunand, Acta. Mater. 71, 89 (2014).

    Article  Google Scholar 

  16. T. Sakthivel, S. Panneer Selvi, and K. Laha, Mat. Sci. Eng. A 640, 61 (2015).

    Article  Google Scholar 

  17. B. Q. Han and D. C. Dunand, Mat. Sci. Eng. A 300, 235 (2001).

    Article  Google Scholar 

  18. T. Shrestha, M. Basirat, I. Charit, G. P. Potirniche, K. K. Rink, and U. Sahaym, J. Nucl. Mater. 423, 110 (2012).

    Article  Google Scholar 

  19. S. M. Zhu, S. C. Tjon, and J. K. L. Lai, Acta Mater. 46, 2969 (1998).

    Article  Google Scholar 

  20. N. Q. Vo, C. H. L. Liebscher, M. J. S. Rawlings, M. Asta, and D. C. Dunand, Acta Mater. 71, 89 (2014).

    Article  Google Scholar 

  21. D. V. V. Satyanarayana, G. Malakondaiah, and D. S. Sarma, Mat. Sci. Eng. A 323, 119 (2002).

    Article  Google Scholar 

  22. B. Wilshire and H. Burt, Metall. Mater. Trans. A 37, 1005 (2006).

    Article  Google Scholar 

  23. B. Wilshire and P. J. Scharning, Scripta Mater. 56, 701 (2007).

    Article  Google Scholar 

  24. B. Wilshire and A. J. Battenbough, Mat. Sci. Eng. A 443, 156 (2007).

    Article  Google Scholar 

  25. B. Wilshire, P. J. Scharning, and R. Hurst, Mat. Sci. Eng. A 510-551, 3 (2009).

    Article  Google Scholar 

  26. M. Yang, Q. Wang, X. L. Song, J. Jia, and Z. D. Xiang, Int. J. Mater. Res. 107, 133 (2016).

    Article  Google Scholar 

  27. Q. Wang, M. Yang, X. L. Song, J. Jia, and Z. D. Xiang, Metall. Mater. Trans. A 47, 3479 (2016).

    Article  Google Scholar 

  28. V. Gaffard, J. Besson, and A. F. Gourgues-Lorenzon, Int. J. Fracture 133, 139 (2005).

    Article  Google Scholar 

  29. J. S. Lee, H. G. Armaki, K. Maruyama, T. Muraki, and H. Asahi, Mat. Sci. Eng. A 428, 270 (2006).

    Article  Google Scholar 

  30. F. C. Monkman and N. J. Grant, Proc. ASTM 56, 593 (1956).

    Google Scholar 

  31. M. F. Ashby, Acta Metall. 20, 887 (1972).

    Article  Google Scholar 

  32. F. R. N. Nabarro, Acta Mater. 54, 263 (2006).

    Article  Google Scholar 

  33. P. J. Ennis, A. Zielinska-Lipiec, O. Wachter, and A. Czyrska-Filemonowicz, Acta Mater. 45, 4901 (1997).

    Article  Google Scholar 

  34. K. Guguloth and N. Roy, Mat. Sci. Eng. A 680, 388 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yao, H., Song, X. et al. Predicting creep strengths and lifetimes of creep resistant engineering alloys. Met. Mater. Int. 24, 51–59 (2018). https://doi.org/10.1007/s12540-017-7359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7359-4

Keywords

Navigation