Skip to main content
Log in

Effect of different microstructural parameters on hydrogen induced cracking in an API X70 pipeline steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the surface and cross section of an as-received API X70 pipeline steel was studied by SEM and EDS techniques in order to categorize the shape and morphology of inclusions. Then, an electrochemical hydrogen charging using a mixed solution of 0.2 M sulfuric acid and 3 g/l ammonium thiocyanate has been utilized to create hydrogen cracks in X70 steel. After hydrogen charging experiments, the cross section of this steel has been accurately checked by SEM in order to find out hydrogen cracks. The region of hydrogen cracks was investigated by SEM and EBSD techniques to predict the role of different microstructural parameters involving hydrogen induced cracking (HIC) phenomenon. The results showed that inclusions were randomly distributed in the cross section of tested specimens. Moreover, different types of inclusions in as-received X70 steel were found. However, only inclusions which were hard, brittle and incoherent with the metal matrix, such as manganese sulfide and carbonitride precipitates, were recognized to be harmful to HIC phenomenon. Moreover, HIC cracks propagate dominantly in transgraular manner through differently oriented grains with no clear preferential trend. Moreover, a different type of HIC crack with about 15-20 degrees of deviation from the rolling direction was found and studied by EBSD technique and role of micro-texture parameters on HIC was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. A. Oriani and P. H. Josephic, Acta Metall. 27, 997 (1979).

    Article  Google Scholar 

  2. C. A. Zapffe and C. E. Sims, T. Am. I. Min. Met. Eng. 145, 225 (1941).

    Google Scholar 

  3. A. S. Tetelman and W. D. Robertson, T. Am. I. Min. Met. Eng. 224, 775 (1962).

    Google Scholar 

  4. M. A. Mohtadi-Bonab, J. A. Szpunar, and S. S. Razavi-tousi, Eng. Fail. Anal. 33, 163 (2013).

    Article  Google Scholar 

  5. M. A. Mohtadi-Bonab, J. A. Szpunar, L. Collins, and R. Stankiewich, Int. J. Hydrogen Energ. 39, 6076 (2014).

    Article  Google Scholar 

  6. M. A. Mohtadi-Bonab, J. A. Szpunar, and S. S. Razavi-tousi, Int. J. Hydrogen Energ. 38, 13831 (2013).

    Article  Google Scholar 

  7. X. B. Shi, W. Yan, W. Wang, L. Y. Zhao, Y. Y. Shan, and K. Yang, J. Iron Steel Res. Int. 22, 937 (2015).

    Article  Google Scholar 

  8. Z. Y. Liu, X. Z. Wang, C. W. Du, J. K. Li, and X. G. Li, Mat. Sci. Eng. A 658, 348 (2016).

    Article  Google Scholar 

  9. M. A. Mohtadi-Bonab, M. Eskandari, K. M. M. Rahman, R. ouellet, and J. A. Szpunar, Int. J. Hydrogen Energ. 23, 4185 (2016).

    Article  Google Scholar 

  10. M. A. Mohtadi-Bonab, R. Karimdadashi, M. Eskandari, and J. A. Szpunar, J. Mater. Eng. Perform. 25, 1781 (2016).

    Article  Google Scholar 

  11. T. Hara, H. Asahi, and H. Ogawa, Corros. Sci. 60, 1113 (2004).

    Article  Google Scholar 

  12. W. K. Kim, S. U. Koh, B. Y. Yang, and K. Y. Kim, Corros. Sci. 50, 3336 (2008).

    Article  Google Scholar 

  13. D. Hejazi, A. J. Haq, N. Yazdipour, D. P. Dunne, A. Calka, F. Barbaro, et al. Mat. Sci. Eng. A 551, 40 (2012).

    Article  Google Scholar 

  14. Z. Y. Liu, X. G. Li, C. W. Du, L. Lu, Y. R. Zhang, and Y. F. Cheng, Corros. Sci. 51, 895 (2009).

    Article  Google Scholar 

  15. E. M. Moore and J. J. Warga, Mater. Performance 15, 17 (1976).

    Google Scholar 

  16. V. Venegas, F. Caleyo, T. Baudin, J. H. Espina-Hernández, and J. M. Hallen, Corros. Sci. 53, 4204 (2011).

    Article  Google Scholar 

  17. M. A. Mohtadi-Bonab, M. Eskandari, and J. A. Szpunar, Mat. Sci. Eng. A 620, 97 (2015).

    Article  Google Scholar 

  18. M. A. Mohtadi-Bonab, J. A. Szpunar, R. Basu, and M. Eskandari, Int. J. Hydrogen Energ. 40, 1096 (2015).

    Article  Google Scholar 

  19. H. Tamehiro, T. Takeda, S. Matsuda, K. Yamamoto, and N. Okumura, T. Iron Steel I. Jpn. 25, 982 (1985).

    Article  Google Scholar 

  20. M. A. Al-Anezi and S. Rao, J. Fail. Anal. Preven. 11, 385 (2011).

    Article  Google Scholar 

  21. J. Moon, C. Park, and S. J. Kim, Met. Mater. Int. 18, 613 (2012).

    Article  Google Scholar 

  22. J. Moon, S. J. Kim, and C. Lee, Met. Mater. Int. 19, 45 (2013).

    Article  Google Scholar 

  23. T. Y. Jin, Z. Y. Liu, and Y. F. Cheng, Int. J. Hydrogen Energ. 35, 8014 (2010).

    Article  Google Scholar 

  24. J. Maciejewski, J. Fail. Anal. Preven. 15, 169 (2015).

    Article  Google Scholar 

  25. R. Badji, T. Chauveau, and B. Bacroix, Mat. Sci. Eng. A 575, 94 (2013).

    Article  Google Scholar 

  26. V. Venegas, F. Caleyo, J. M. Hallen, T. Baudin, and R. Penelle, Metall. Mater. Trans. A 38, 1022 (2007).

    Article  Google Scholar 

  27. M. Iino, Metall. Mater. Trans. A 9, 1581 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mohtadi-Bonab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohtadi-Bonab, M.A., Eskandari, M., Karimdadashi, R. et al. Effect of different microstructural parameters on hydrogen induced cracking in an API X70 pipeline steel. Met. Mater. Int. 23, 726–735 (2017). https://doi.org/10.1007/s12540-017-6691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6691-z

Keywords

Navigation