Skip to main content
Log in

Modeling surface tension of multicomponent liquid steel using Modified Quasichemical Model and Constrained Gibbs Energy Minimization

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Surface tension of multicomponent liquid steel was calculated based on the concept proposed by Butler, which assumes a chemical equilibrium between a bulk phase and a surface phase of a monolayer. Requirement for the calculation of the surface tension was categorized as: 1) accurate description of partial excess Gibbs energies of solutes in the liquid steel, in particular for those of non-metallic solutes such as S, C, etc., 2) physical properties of pure components, such as surface tension and molar volume, and 3) possibility of solving a series of Butler equations for multicomponent liquid steel. In the present study, it is proposed to use the Modified Quasichemical Model in order to describe the partial excess Gibbs energies of solutes, and to use the Constrained Gibbs Energy Minimization in order to solve equilibrium between the bulk and the surface phases of the multicomponent liquid steel. Physical properties of non-stable pure components such as S, C, were treated as variables to reproduce known experimental data in binary systems. The proposed method can be easily extended into multicomponent liquid steel. Examples of the surface tension calculations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.-M. Seo, Y.-H. Paik, D.-S. Kim, and W.-P. Lee, Met. Mater. Int. 2, 65 (1996).

    Article  Google Scholar 

  2. S.-M. Seo, D.-S. Kim, and Y.-H. Paik, Met. Mater. Int. 7, 479 (1996).

    Article  Google Scholar 

  3. M.-S. Shin, S. Cho, J. Lee, and J. H. Park, Met. Mater. Int. 16, 495 (2010).

    Article  Google Scholar 

  4. J. H. Kim, S. H. Hong, S. W. Joo, J. W. Shin, D. H. Kim, H. S. Choi, C. S. Ha, and B. D. You, Korean J. Met. Mater. 52, 909 (2014).

    Google Scholar 

  5. E.-Y. Ko, J. Choi, J.-Y. Park, and I. Sohn, Met. Mater. Int. 20, 141 (2014).

    Article  Google Scholar 

  6. M. S. Shin, J. S. Oh, J. H. Lee, S. K. Jung, and J. H. Lee, Met. Mater. Int. 20, 1139 (2014).

    Article  Google Scholar 

  7. T. Iida and R. Guthrie, The Physical Properties of Liquid Metals, pp.109–146, Clarendon Press, Oxford, United Kingdom (1988).

    Google Scholar 

  8. T. Tanaka and J. Lee, Treatise on Process Metallurgy, Vol. 2, Ch. 1.3. Experiments, pp.19–34, Elsevier, Oxford, UK (2013).

    Google Scholar 

  9. B. Keene, Int. Mater. Rev. 33, 1 (1988).

    Article  Google Scholar 

  10. T. Tanaka, K. Hack, T. Iida, and S. Hara, Zeitschrift Fuer Metallkunde 87, 5 (1996).

    Google Scholar 

  11. T. Tanaka, K. Hack, and S. Hara, Calphad. 24, 465 (2000).

    Article  Google Scholar 

  12. T. Tanaka and S. Hara, Steel Res. 72, 439 (2001).

    Google Scholar 

  13. I. Egry, E. Ricci, R. Novakovic, and S. Ozawa, Adv. Colloid. Interfac. 159, 198 (2010).

    Article  Google Scholar 

  14. R. Pajarre, P. Koukkari, T. Tanaka, and J. Lee, Calphad. 30 196 (2006).

    Article  Google Scholar 

  15. S. Petersen and K. Hack, Int. J. Mater. Res.(formerly Zeitschrift fuer Metallkunde), 98, 935 (2007).

    Article  Google Scholar 

  16. J. A. V. Butler, P. Roy. Soc. Lond. A Mat. 135 (1932).

    Google Scholar 

  17. T. Tanaka and S. Hara, Steel Res. 65, 21 (1994).

    Google Scholar 

  18. R. Hultgren, Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley and Sons Inc., Hoboken, NJ (1963).

    Google Scholar 

  19. M.-K. Paek, J.-J. Pak, and Y.-B. Kang, Calphad. 46, 92 (2014).

    Article  Google Scholar 

  20. A. Katsnelson, F. Tsukihashi, and N. Sano, ISIJ International 33, 1045 (1993).

    Article  Google Scholar 

  21. J. Fenstad, Ph.D. Thesis, Norwegian University of Science and Technology, cited in [16].

  22. E.-J. Kim, B.-D. You, and J.-J. Pak, Metall. Mater. Trans. B 34, 51 (2003).

    Article  Google Scholar 

  23. W. Huang, Scand. J. Metall., 19, 26 (1990).

    Google Scholar 

  24. D. Djurovic, B. Hallstedt, J. Von Appen, and R. Dronskowski, Calphad. 34, 279 (2010).

    Article  Google Scholar 

  25. F. Sommer, Zeitschrift Fuer Metallkunde 73, 72 (1982).

    Google Scholar 

  26. A. D. Pelton, S. A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault, Metall. Mater. Trans. B 31, 651 (2000).

    Article  Google Scholar 

  27. A. D. Pelton and Y. B. Kang, Int. J. Mater. Res. (formerly Zeitschrift fuer Metallkunde), 98, 907 (2007).

    Article  Google Scholar 

  28. Y.-B. Kang and A. D. Pelton, Calphad. 34, 180 (2010).

    Article  Google Scholar 

  29. A. D. Pelton and P. Chartrand, Metall. Mater. Trans. A 32, 1355 (2001).

    Article  Google Scholar 

  30. P. Waldner and A. D. Pelton, J. Phase. Equilib. Diff. 26, 23 (2005).

    Article  Google Scholar 

  31. K. Shubhank and Y.-B. Kang, Calphad. 45, 127 (2014).

    Article  Google Scholar 

  32. Y.-B. Kang, Calphad. 34, 232 (2010).

    Article  Google Scholar 

  33. M. Divakar, J. Hajra, A. Jakobsson, and S. Seetharaman, Metall. Mater. Trans. B 31, 267 (2000).

    Article  Google Scholar 

  34. J. Riipi and T. Fabritius, ISIJ International 47, 1575 (2007).

    Article  Google Scholar 

  35. K. Nogi, W. Chung, A. McLean, and W. Miller, Material Transactions, JIM 32, 164 (1991).

    Article  Google Scholar 

  36. A. Kasama, T. Inui, and Z.-I. Morita, J. Jpn. I. Met. 42, 1206 (1978).

    Google Scholar 

  37. B. F. Dyson, Transaction of the Metallurgical Society of AIME 227, 1098 (1963).

    Google Scholar 

  38. S. Popel, B. Tsarevskiy, and N. Dzhemilev, Phys. Met. Metallogr. 18, 158 (1964).

    Google Scholar 

  39. V. Tszin-Tan, R. Karasev, and A. Samarin, Izv. Akad. Nauk SSSR OTN. Metall. Toplivo 2, 49 (1960).

    Google Scholar 

  40. A. Ofitserov, Russ Metall. 4, 64 (1971).

    Google Scholar 

  41. S. Volokov, V. Mchedlishvili, and A. Samarin, Dokl. Akad. Nauk SSSR. 149, 1131 (1963).

    Google Scholar 

  42. J. Lee, L. T. Hoai, and M. Shin, Metall. Mater. Trans. B 42, 546 (2011).

    Article  Google Scholar 

  43. V. Nizhenko and L. Floka, Izvestija Akademii Nauk SSSR/Metally 2, 53 (1974).

    Google Scholar 

  44. S. Popel, V. Kozhurkov, and A. Zhukov, Izvestija Akademii Nauk SSSR/Metally 5, 69 (1975).

    Google Scholar 

  45. J. Lee and K. Morita, ISIJ International 42, 588 (2002).

    Article  Google Scholar 

  46. C. Wagner, Thermodynamics of Alloys, pp.51–53, Addison-Wesley Pub. Co., Reading, MA (1951).

    Google Scholar 

  47. A. Kasama, A. McLean, W. A. Miller, Z. I. Morita, and M. J. Ward, Canadian Metallurgical Quarterly 22, 9 (1983).

    Article  Google Scholar 

  48. F. A. Halden and W. D. Kingery, J. Phys. Chem-US. 59, 557 (1955).

    Article  Google Scholar 

  49. B. Keene, K. Mills, J. Bryant, and E. Hondros, Can. Metal. Quart. 21, 393 (1982).

    Article  Google Scholar 

  50. Y. Kawai, K. Mori, M. Kishimoto, K. Ishikura, and T. Shimada, Tetsu-to-Hagane 60, 29 (1974).

    Google Scholar 

  51. V. Nizhenki and L. Floka, Sov. Powder Metall. Met. Ceram. 10 (1972).

    Google Scholar 

  52. K. Morohoshi, M. Uchikoshi, M. Isshiki, and H. Fukuyama, ISIJ International 53, 1315 (2013).

    Article  Google Scholar 

  53. L. T. Hoai and J. Lee, J. Mater. Sci. 47, 8303 (2012).

    Article  Google Scholar 

  54. G. R. Belton, Metallurgical Transactions 3, 1465 (1972).

    Article  Google Scholar 

  55. W. Huang, Calphad. 13, 243 (1989).

    Article  Google Scholar 

  56. A. T. Phan, M.-K. Paek, and Y.-B. Kang, Acta Materialia 79, 1 (2014).

    Article  Google Scholar 

  57. Y.-B. Kang, unpublished, POSTECH, Pohang, Korea (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Wang, W. & Kang, YB. Modeling surface tension of multicomponent liquid steel using Modified Quasichemical Model and Constrained Gibbs Energy Minimization. Met. Mater. Int. 21, 765–774 (2015). https://doi.org/10.1007/s12540-015-4619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4619-z

Keywords

Navigation